17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CpG Oligodeoxynucleotides Induce Differential Cytokine and Chemokine Gene Expression Profiles in Dapulian and Landrace Pigs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oligodeoxynucleotides containing unmethylated CpG motifs (CpG ODN) mimic the immunostimulatory activity of microbial DNA by interacting with Toll-like receptor 9 (TLR9) to activate both the innate and adaptive immune responses in different species. However, few studies have been published to compare the effects of CpG ODN on different pig breeds. Therefore, in this study, whole blood gene expression profiles of DPL and Landrace pigs treated with CpG ODN were studied using RNA-seq technology. Five Hundred differentially expressed genes (DEGs) were identified between the two breeds. DPL pigs had significantly higher number of immune-relevant DEGs than the Landrace pigs after CpG ODN treatment. Pathway analysis showed that cytokine-cytokine receptor interaction and chemokine signaling pathway were the major enriched pathways of the immune-relevant DEGs. Further in vitro experiments showed that PBMCs of the DPL pigs had significantly higher levels of TLR9 mRNA than those of the Landrace pigs, both before and after CpG ODN stimulation. Cytokine and chemokine induction in the PBMCs of both breeds were also measured after CpG ODN stimulation. Our data showed that mRNA levels of cytokines (IFNα, IL8, IL12 p40) and chemokines (CXCL9, CXCL13) were significantly higher in the PBMCs of the DPL pigs than those of the Landrace pigs. Taken together, our data provide new information regarding the pig breed difference in response to CpG ODN stimulation and that higher levels of TLR9 mRNA in DPL pigs may be a major contributor for disease resistance.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Toll-like receptors: critical proteins linking innate and acquired immunity.

          Recognition of pathogens is mediated by a set of germline-encoded receptors that are referred to as pattern-recognition receptors (PRRs). These receptors recognize conserved molecular patterns (pathogen-associated molecular patterns), which are shared by large groups of microorganisms. Toll-like receptors (TLRs) function as the PRRs in mammals and play an essential role in the recognition of microbial components. The TLRs may also recognize endogenous ligands induced during the inflammatory response. Similar cytoplasmic domains allow TLRs to use the same signaling molecules used by the interleukin 1 receptors (IL-1Rs): these include MyD88, IL-1R--associated protein kinase and tumor necrosis factor receptor--activated factor 6. However, evidence is accumulating that the signaling pathways associated with each TLR are not identical and may, therefore, result in different biological responses.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Novel p19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as Well as Distinct from IL-12

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toll-like receptor signaling pathways.

              Members of the Toll-like receptor (TLR) family recognize conserved microbial structures, such as bacterial lipopolysaccharide and viral double-stranded RNA, and activate signaling pathways that result in immune responses against microbial infections. All TLRs activate MyD88-dependent pathways to induce a core set of stereotyped responses, such as inflammation. However, individual TLRs can also induce immune responses that are tailored to a given microbial infection. Thus, these receptors are involved in both innate and adaptive immune responses. The mechanisms and components of these varied responses are only partly understood. Given the importance of TLRs in host defense, dissection of the pathways they activate has become an important emerging research focus. TLRs and their pathways are numerous; Science's Signal Transduction Knowledge Environment's TLR Connections Map provides an immediate, clear overview of the known components and relations of this complex system.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                15 December 2016
                2016
                : 7
                : 1992
                Affiliations
                Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University Tai'an, China
                Author notes

                Edited by: José Roberto Mineo, Federal University of Uberlandia, Brazil

                Reviewed by: Manuel Vilanova, University of Porto, Portugal; Roland Lang, University Hospital Erlangen, Germany

                *Correspondence: Yongqing Zeng yqzeng@ 123456sdau.edu.cn

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2016.01992
                5156958
                bc6509de-7b57-4a53-a488-3a2b6a768cc1
                Copyright © 2016 Hu, Yang, Wang, Li, Zeng and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 September 2016
                : 28 November 2016
                Page count
                Figures: 6, Tables: 6, Equations: 0, References: 60, Pages: 14, Words: 8149
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                pig,cpg odn,cytokines,chemokines,transcriptome
                Microbiology & Virology
                pig, cpg odn, cytokines, chemokines, transcriptome

                Comments

                Comment on this article