7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neuronal mechanisms of novelty seeking

      Preprint

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Humans and other primates interact with the world by observing and exploring visual objects. In particular, they often seek out the opportunities to view novel objects that they have never seen before, even when they have no extrinsic primary reward value. However, despite the importance of novel visual objects in our daily life, we currently lack an understanding of how primate brain circuits control the motivation to seek out novelty. We found that novelty-seeking is regulated by a small understudied subcortical region, the zona incerta (ZI). In a task in which monkeys made eye movements to familiar objects to obtain the opportunity to view novel objects, many ZI neurons were preferentially activated by predictions of future novel objects and displayed burst excitations before gaze shifts to gain access to novel objects. Low intensity electrical stimulation of ZI facilitated gaze shifts, while inactivations of ZI reduced novelty-seeking. Surprisingly, additional experiments showed that this ZI-dependent novelty seeking behavior is not regulated by canonical neural circuitry for reward seeking. The habenula-dopamine pathway, known to reflect reward predictions that control reward seeking, was relatively inactive during novelty-seeking behavior in which novelty had no extrinsic reward value. Instead, high channel-count electrophysiological experiments and anatomical tracing identified a prominent source of control signals for novelty seeking in the anterior ventral medial temporal cortex (AVMTC), a brain region known to be crucially involved in visual processing and object memory. In addition to their well-known function in signaling the novelty or familiarity of objects in the current environment, AVMTC neurons reflected the predictions of future novel objects, akin to the way neurons in reward-circuitry predict future rewards in order to control reward-seeking. Our data uncover a network of primate brain areas that regulate novelty-seeking. The behavioral and neural distinctions between novelty-seeking and reward-processing highlight how the brain can accomplish behavioral flexibility, providing a mechanism to explore novel objects.

          Related collections

          Author and article information

          Contributors
          (View ORCID Profile)
          Journal
          bioRxiv
          March 13 2021
          Article
          10.1101/2021.03.12.435019
          bc7174ef-a43f-4183-a587-883b4f4839cf
          © 2021
          History

          Molecular medicine,Neurosciences
          Molecular medicine, Neurosciences

          Comments

          Comment on this article