3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The development of 2D materials for electrochemical energy applications: A mechanistic approach

      1 , 2 , 1 , 2 , 1 , 2 , 3
      APL Materials
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Advanced materials for energy storage.

          Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Why gold is the noblest of all the metals

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer.

              Density functional theory (DFT) computations were performed to investigate the electronic properties and Li storage capability of Ti(3)C(2), one representative MXene (M represents transition metals, and X is either C or/and N) material, and its fluorinated and hydroxylated derivatives. The Ti(3)C(2) monolayer acts as a magnetic metal, while its derived Ti(3)C(2)F(2) and Ti(3)C(2)(OH)(2) in their stable conformations are semiconductors with small band gaps. Li adsorption forms a strong Coulomb interaction with Ti(3)C(2)-based hosts but well preserves its structural integrity. The bare Ti(3)C(2) monolayer exhibits a low barrier for Li diffusion and high Li storage capacity (up to Ti(3)C(2)Li(2) stoichiometry). The surface functionalization of F and OH blocks Li transport and decreases Li storage capacity, which should be avoided in experiments. The exceptional properties, including good electronic conductivity, fast Li diffusion, low operating voltage, and high theoretical Li storage capacity, make Ti(3)C(2) MXene a promising anode material for Li ion batteries.
                Bookmark

                Author and article information

                Journal
                APL Materials
                APL Materials
                AIP Publishing
                2166-532X
                March 2019
                March 2019
                : 7
                : 3
                : 030902
                Affiliations
                [1 ]Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, USA
                [2 ]Energy Sciences Institute, Yale University West Campus, West Haven, Connecticut 06516, USA
                [3 ]Canadian Institute for Advanced Research Azrieli Global Scholar, Toronto, Ontario M5G 1M1, Canada
                Article
                10.1063/1.5085187
                bc79528a-ca0c-45cf-b39a-f8458c5c00a9
                © 2019
                History

                Comments

                Comment on this article