37
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IoT Platform for COVID-19 Prevention and Control: A Survey

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a result of the worldwide transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has evolved into an unprecedented pandemic. Currently, with unavailable pharmaceutical treatments and low vaccination rates, this novel coronavirus results in a great impact on public health, human society, and global economy, which is likely to last for many years. One of the lessons learned from the COVID-19 pandemic is that a long-term system with non-pharmaceutical interventions for preventing and controlling new infectious diseases is desirable to be implemented. Internet of things (IoT) platform is preferred to be utilized to achieve this goal, due to its ubiquitous sensing ability and seamless connectivity. IoT technology is changing our lives through smart healthcare, smart home, and smart city, which aims to build a more convenient and intelligent community. This paper presents how the IoT could be incorporated into the epidemic prevention and control system. Specifically, we demonstrate a potential fog-cloud combined IoT platform that can be used in the systematic and intelligent COVID-19 prevention and control, which involves five interventions including COVID-19 Symptom Diagnosis, Quarantine Monitoring, Contact Tracing & Social Distancing, COVID-19 Outbreak Forecasting, and SARS-CoV-2 Mutation Tracking. We investigate and review the state-of-the-art literatures of these five interventions to present the capabilities of IoT in countering against the current COVID-19 pandemic or future infectious disease epidemics.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe

          Following the detection of the new coronavirus1 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics of coronavirus disease 2019 (COVID-19). In response, many European countries have implemented non-pharmaceutical interventions, such as the closure of schools and national lockdowns. Here we study the effect of major interventions across 11 European countries for the period from the start of the COVID-19 epidemics in February 2020 until 4 May 2020, when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks previously, allowing for the time lag between infection and death. We use partial pooling of information between countries, with both individual and shared effects on the time-varying reproduction number (Rt). Pooling allows for more information to be used, helps to overcome idiosyncrasies in the data and enables more-timely estimates. Our model relies on fixed estimates of some epidemiological parameters (such as the infection fatality rate), does not include importation or subnational variation and assumes that changes in Rt are an immediate response to interventions rather than gradual changes in behaviour. Amidst the ongoing pandemic, we rely on death data that are incomplete, show systematic biases in reporting and are subject to future consolidation. We estimate that-for all of the countries we consider here-current interventions have been sufficient to drive Rt below 1 (probability Rt < 1.0 is greater than 99%) and achieve control of the epidemic. We estimate that across all 11 countries combined, between 12 and 15 million individuals were infected with SARS-CoV-2 up to 4 May 2020, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions-and lockdowns in particular-have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period

            It is urgent to understand the future of severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) transmission. We used estimates of seasonality, immunity, and cross-immunity for betacoronaviruses OC43 and HKU1 from time series data from the USA to inform a model of SARS-CoV-2 transmission. We projected that recurrent wintertime outbreaks of SARS-CoV-2 will probably occur after the initial, most severe pandemic wave. Absent other interventions, a key metric for the success of social distancing is whether critical care capacities are exceeded. To avoid this, prolonged or intermittent social distancing may be necessary into 2022. Additional interventions, including expanded critical care capacity and an effective therapeutic, would improve the success of intermittent distancing and hasten the acquisition of herd immunity. Longitudinal serological studies are urgently needed to determine the extent and duration of immunity to SARS-CoV-2. Even in the event of apparent elimination, SARS-CoV-2 surveillance should be maintained since a resurgence in contagion could be possible as late as 2024.
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of non-pharmaceutical interventions to contain COVID-19 in China

              Summary On March 11, 2020, the World Health Organization declared COVID-19 a pandemic 1 . The outbreak containment strategies in China based on non-pharmaceutical interventions (NPIs) appear to be effective 2 , but quantitative research is still needed to assess the efficacy of NPIs and their timings 3 . Using epidemiological and anonymised human movement data 4,5 , here we develop a modelling framework that uses daily travel networks to simulate different outbreak and intervention scenarios across China. We estimated that there were a total of 114,325 COVID-19 cases (interquartile range 76,776 -164,576) in mainland China as of February 29, 2020. Without NPIs, the COVID-19 cases would likely have shown a 67-fold increase (interquartile range 44 - 94) by February 29, 2020, with the effectiveness of different interventions varying. The early detection and isolation of cases was estimated to have prevented more infections than travel restrictions and contact reductions, but combined NPIs achieved the strongest and most rapid effect. The lifting of travel restrictions since February 17, 2020 does not appear to lead to an increase in cases across China if the social distancing interventions can be maintained, even at a limited level of 25% reduction on average through late April. Our findings contribute to an improved understanding of NPIs on COVID-19 and to inform response efforts across the World.

                Author and article information

                Contributors
                Journal
                IEEE Access
                IEEE Access
                0063500
                ACCESS
                IAECCG
                Ieee Access
                IEEE
                2169-3536
                2021
                23 March 2021
                : 9
                : 49929-49941
                Affiliations
                [1] departmentDepartment of Electrical and Computer Engineering, institutionStevens Institute of Technology, institutionringgold 33694; Hoboken NJ 07030 USA
                Article
                10.1109/ACCESS.2021.3068276
                8545211
                34812390
                bc7c4bd3-d16f-4169-8412-d7c98a44001f
                This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

                This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

                History
                : 25 January 2021
                : 09 March 2021
                : 06 April 2021
                Page count
                Figures: 10, Tables: 2, Equations: 21, References: 117, Pages: 13
                Categories
                Biomedical Engineering
                Communications technology
                Computational and artificial intelligence
                Computers and information processing
                Sensors

                covid-19,sars-cov-2,smart healthcare,internet of things,artificial intelligence,big data,fog computing

                Comments

                Comment on this article

                Related Documents Log