32
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HIIT produces increases in muscle power and free testosterone in male masters athletes

      research-article
      1 , 2 , , 3 , 4
      Endocrine Connections
      Bioscientifica Ltd
      cortisol, HIIT, power, steroid, testosterone

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-intensity interval training (HIIT) improves peak power output (PPO) in sedentary aging men but has not been examined in masters endurance athletes. Therefore, we investigated whether a six-week program of low-volume HIIT would (i) improve PPO in masters athletes and (ii) whether any change in PPO would be associated with steroid hormone perturbations. Seventeen male masters athletes (60 ± 5 years) completed the intervention, which comprised nine HIIT sessions over six weeks. HIIT sessions involved six 30-s sprints at 40% PPO, interspersed with 3 min active recovery. Absolute PPO (799 ± 205 W and 865 ± 211 W) and relative PPO (10.2 ± 2.0 W/kg and 11.0 ± 2.2 W/kg) increased from pre- to post-HIIT respectively ( P < 0.001, Cohen’s d = 0.32−0.38). No significant change was observed for total testosterone (15.2 ± 4.2 nmol/L to 16.4 ± 3.3 nmol/L ( P = 0.061, Cohen’s d = 0.32)), while a small increase in free testosterone occurred following HIIT (7.0 ± 1.2 ng/dL to 7.5 ± 1.1 ng/dL pre- to post-HIIT ( P = 0.050, Cohen’s d = 0.40)). Six weeks’ HIIT improves PPO in masters athletes and increases free testosterone. Taken together, these data indicate there is a place for carefully timed HIIT epochs in regimes of masters athletes.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of Low-Volume High-Intensity Interval Training (HIT) on Fitness in Adults: A Meta-Analysis of Controlled and Non-Controlled Trials

          Background Low-volume high-intensity interval training (HIT) appears to be an efficient and practical way to develop physical fitness. Objective Our objective was to estimate meta-analysed mean effects of HIT on aerobic power (maximum oxygen consumption [VO2max] in an incremental test) and sprint fitness (peak and mean power in a 30-s Wingate test). Data Sources Five databases (PubMed, MEDLINE, Scopus, BIOSIS and Web of Science) were searched for original research articles published up to January 2014. Search terms included ‘high intensity’, ‘HIT’, ‘sprint’, ‘fitness’ and ‘VO2max’. Study Selection Inclusion criteria were fitness assessed pre- and post-training; training period ≥2 weeks; repetition duration 30–60 s; work/rest ratio 18 years. Data Extraction The final data set consisted of 55 estimates from 32 trials for VO2max, 23 estimates from 16 trials for peak sprint power, and 19 estimates from 12 trials for mean sprint power. Effects on fitness were analysed as percentages via log transformation. Standard errors calculated from exact p values (where reported) or imputed from errors of measurement provided appropriate weightings. Fixed effects in the meta-regression model included type of study (controlled, uncontrolled), subject characteristics (sex, training status, baseline fitness) and training parameters (number of training sessions, repetition duration, work/rest ratio). Probabilistic magnitude-based inferences for meta-analysed effects were based on standardized thresholds for small, moderate and large changes (0.2, 0.6 and 1.2, respectively) derived from between-subject standard deviations (SDs) for baseline fitness. Results A mean low-volume HIT protocol (13 training sessions, 0.16 work/rest ratio) in a controlled trial produced a likely moderate improvement in the VO2max of active non-athletic males (6.2 %; 90 % confidence limits ±3.1 %), when compared with control. There were possibly moderate improvements in the VO2max of sedentary males (10.0 %; ±5.1 %) and active non-athletic females (3.6 %; ±4.3 %) and a likely small increase for sedentary females (7.3 %; ±4.8 %). The effect on the VO2max of athletic males was unclear (2.7 %; ±4.6 %). A possibly moderate additional increase was likely for subjects with a 10 mL·kg−1·min−1 lower baseline VO2max (3.8 %; ±2.5 %), whereas the modifying effects of sex and difference in exercise dose were unclear. The comparison of HIT with traditional endurance training was unclear (−1.6 %; ±4.3 %). Unexplained variation between studies was 2.0 % (SD). Meta-analysed effects of HIT on Wingate peak and mean power were unclear. Conclusions Low-volume HIT produces moderate improvements in the aerobic power of active non-athletic and sedentary subjects. More studies are needed to resolve the unclear modifying effects of sex and HIT dose on aerobic power and the unclear effects on sprint fitness.
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force.

            The purpose of this study was to examine the effects of short-term high-intensity interval training (HIIT) on cardiovascular function, cardiorespiratory fitness, and muscular force. Active, young (age and body fat = 25.3 ± 4.5 years and 14.3 ± 6.4%) men and women (N = 20) of a similar age, physical activity, and maximal oxygen uptake (VO2max) completed 6 sessions of HIIT consisting of repeated Wingate tests over a 2- to 3-week period. Subjects completed 4 Wingate tests on days 1 and 2, 5 on days 3 and 4, and 6 on days 5 and 6. A control group of 9 men and women (age and body fat = 22.8 ± 2.8 years and 15.2 ± 6.9%) completed all testing but did not perform HIIT. Changes in resting blood pressure (BP) and heart rate (HR), VO2max, body composition, oxygen (O2) pulse, peak, mean, and minimum power output, fatigue index, and voluntary force production of the knee flexors and extensors were examined pretraining and posttraining. Results showed significant (p 0.05) in resting BP, HR, or force production was revealed. Data show that HIIT significantly enhanced VO2max and O2 pulse and power output in active men and women.
              • Record: found
              • Abstract: not found
              • Article: not found

              Effect of training on plasma anabolic and catabolic steroid hormones and their response during physical exercise.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                October 2017
                21 July 2017
                : 6
                : 7
                : 430-436
                Affiliations
                [1 ]School of Sport Health and Outdoor Education, Trinity Saint David, University of Wales, Wales, UK
                [2 ]Active Ageing Research Group Department of Medical and Sport Sciences, University of Cumbria, Lancaster, UK
                [3 ]Institute of Clinical Exercise and Health Science University of the West of Scotland, Scotland, UK
                [4 ]Faculty of Health Federation University, Victoria, Australia
                Author notes
                Correspondence should be addressed to L D Hayes; Email: lawrence.hayes@ 123456cumbria.ac.uk
                Article
                EC170159
                10.1530/EC-17-0159
                5551442
                28794164
                bc7c92e9-86d5-4891-b93a-79eed492213e
                © 2017 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 20 July 2017
                : 21 July 2017
                Categories
                Research

                cortisol,hiit,power,steroid,testosterone
                cortisol, hiit, power, steroid, testosterone

                Comments

                Comment on this article

                Related Documents Log