+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Day-old chicken quality and performance of broiler chickens from 3 different hatching systems


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          In on-farm hatching systems, eggs are transported at d 18 of incubation to the broiler farm, where chickens have immediate access to feed and water after hatching. In hatchery-fed systems, newly hatched chickens have immediate access to feed and water in the hatchery and are transported to the farm thereafter. Conventionally hatched chickens can remain without access to feed and water up to 72 h after hatching until placement on the farm. The current study compared day-old chicken quality, performance, and slaughter yield of broiler chickens that were on-farm hatched ( OH), hatchery-fed ( HF), or conventionally hatchery-hatched ( HH). The experiment was performed in 6 rooms in 1 house. Each room contained 2 duplicate pens with approximately 1,155 chickens per pen; 2 rooms with each 2 duplicate pens were assigned to 1 treatment. The experiment was repeated during 3 consecutive production cycles. Chickens originated from young parent stock flocks. Results showed that HF and OH chickens were heavier and longer than HH chickens at day ( D) 1. Relative weight of stomach and intestines were highest for OH chickens. The OH chickens had worse day-old chicken quality in terms of navel condition and red hocks than HH and HF chickens. Treatments did not differ in first wk and total mortality. From D0 until slaughter age, body weight was highest for OH, followed by HF and HH. Furthermore, carcass weight at slaughter age (D40) was highest for OH chickens, followed by HF and HH chickens. Breast fillets showed a higher incidence of white striping and wooden breast in HF and OH chickens compared with HH chickens. In conclusion, the current study showed that both OH and HF chickens of young parent flocks had better growth performance, which could explain the higher prevalence of breast myopathies, compared with HH. The worse day-old chicken quality for OH compared with HH and HF does not seem to affect first wk mortality and later life performance.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers.

          A myopathy affecting the pectoralis major muscle of the commercial broiler has emerged creating remarkable economic losses as well as a potential welfare problem of the birds. We here describe the macroscopic and histologic lesions of this myopathy within 10 pectoralis major muscles of 5- to 6-week-old broilers in Finland. Following macroscopic evaluation and palpation of the muscles, a tissue sample of each was fixed in formalin, processed for histology, and histologically evaluated. The muscles that were macroscopically hard, outbulging, pale, and often accompanied with white striping histologically exhibited moderate to severe polyphasic myodegeneration with regeneration as well as a variable amount of interstitial connective tissue accumulation or fibrosis. All affected cases also exhibited perivenular lymphocyte accumulation. The etiology of this myodegenerative lesion remains yet open. Polyphasic myodegeneration is associated with several previously known etiologies, but palpatory hardness focusing on the pectoralis major, together with perivenular lymphocytes, has not been described in relation to them. The results of this study provide the pathological basis for further studies concerning the etiology of the currently described myopathy.
            • Record: found
            • Abstract: found
            • Article: not found

            White striping and woody breast myopathies in the modern poultry industry: a review.

            Myopathies are gaining the attention of poultry meat producers globally. White Striping (WS) is a condition characterized by the occurrence of white striations parallel to muscle fibers on breast, thigh, and tender muscles of broilers, while Woody Breast (WB) imparts tougher consistency to raw breast fillets. Histologically, both conditions have been characterized with myodegeneration and necrosis, fibrosis, lipidosis, and regenerative changes. The occurrence of these modern myopathies has been associated with increased growth rate in birds. The severity of the myopathies can adversely affect consumer acceptance of raw cut up parts and/or quality of further processed poultry meat products, resulting in huge economic loss to the industry. Even though gross and/or histologic characteristics of modern myopathies are similar to some of the known conditions, such as hereditary muscular dystrophy, nutritional myopathy, toxic myopathies, and marbling, WS and WB could have a different etiology. As a result, there is a need for future studies to identify markers for WS and WB in live birds and genetic, nutritional, and/or management strategies to alleviate the condition.
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Influence of growth rate on the occurrence of white striping in broiler breast fillets.

              White striping refers to the occurrence of different degrees of white striations on broiler breast fillets and thighs of larger broilers, yet little is known about its causes. Thus, the objective of the study was to estimate the occurrence of normal (NORM), moderate (MOD), and severe (SEV) degrees of white striping with respect to the growth rate of broilers and to compare their proximate composition without the confounding effect of diet. Straight-run 1-d-old chicks (n = 280) were randomly assigned to either a low- (LED) or high-energy (HED) diet (5 replicates of 28 birds/dietary treatment). Birds were processed at 54 d of age, and live weight, deboned fillet weight, and occurrence of white striping were recorded. As expected, birds fed the HED had lower (P < 0.05) feed conversion ratios than birds fed LED (2.08 vs. 2.28). Also, HED-fed birds had heavier P < 0.05) live and fillet weights when compared with the LED-fed birds. A greater (P < 0.05) percentage of breast fillets from LED-fed birds were scored NORM, whereas HED-fed birds produced a greater (P < 0.05) percentage of SEV fillets. Fillet weight and yield (percent of live weight) increased (P < 0.05) as the degree of white striping increased from NORM to SEV. Additionally, NORM fillets had greater (P < 0.05) lipid and lower (P < 0.05) protein content when compared with SEV fillets. Also, NORM fillets had greater (P < 0.05) percentages of SFA than SEV fillets; however, proportions of all monounsaturated fatty acids, as well as linoleic and linolenic acids, were greater (P < 0.05) in SEV than NORM fillets. These results suggest that an increased growth rate results in increased occurrence of higher degrees of white striping in broiler breast fillets, and the various degrees of white striping are associated with differences in chemical composition of breast fillets.

                Author and article information

                Poult Sci
                Poult Sci
                Poultry Science
                23 December 2020
                March 2021
                23 December 2020
                : 100
                : 3
                : 100953
                []Wageningen Livestock Research, Wageningen University and Research, Wageningen 6700 AH, The Netherlands
                []Adaptation Physiology Group, Wageningen University and Research, Wageningen 6700 AH, The Netherlands
                []Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3508 TD, The Netherlands
                [§ ]Experimental Poultry Centre, Province of Antwerp, Geel 2440, Belgium
                Author notes
                [1 ]Corresponding author: ingrid.dejong@ 123456wur.nl
                S0032-5791(20)31004-X 100953
                © 2020 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                : 13 October 2020
                : 18 December 2020
                Management and Production

                broiler,on-farm hatching,early nutrition,performance,breast myopathies


                Comment on this article