Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Ghrelin induces adiposity in rodents.

Nature

drug effects, physiology, Animals, Circadian Rhythm, Energy Metabolism, Fasting, Food, Ghrelin, metabolism, Growth Hormone, secretion, Hypothalamus, Injections, Intraventricular, Male, Mice, Peptide Hormones, Peptides, administration & dosage, blood, Rats, Rats, Sprague-Dawley, Receptors, Cell Surface, Receptors, G-Protein-Coupled, Receptors, Ghrelin, Weight Gain, Adipose Tissue

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The discovery of the peptide hormone ghrelin, an endogenous ligand for the growth hormone secretagogue (GHS) receptor, yielded the surprising result that the principal site of ghrelin synthesis is the stomach and not the hypothalamus. Although ghrelin is likely to regulate pituitary growth hormone (GH) secretion along with GH-releasing hormone and somatostatin, GHS receptors have also been identified on hypothalamic neurons and in the brainstem. Apart from potential paracrine effects, ghrelin may thus offer an endocrine link between stomach, hypothalamus and pituitary, suggesting an involvement in regulation of energy balance. Here we show that peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats. Intracerebroventricular administration of ghrelin generated a dose-dependent increase in food intake and body weight. Rat serum ghrelin concentrations were increased by fasting and were reduced by re-feeding or oral glucose administration, but not by water ingestion. We propose that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary.

      Related collections

      Most cited references 24

      • Record: found
      • Abstract: found
      • Article: not found

      Ghrelin is a growth-hormone-releasing acylated peptide from stomach.

      Small synthetic molecules called growth-hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. They act through GHS-R, a G-protein-coupled receptor for which the ligand is unknown. Recent cloning of GHS-R strongly suggests that an endogenous ligand for the receptor does exist and that there is a mechanism for regulating GH release that is distinct from its regulation by hypothalamic growth-hormone-releasing hormone (GHRH). We now report the purification and identification in rat stomach of an endogenous ligand specific for GHS-R. The purified ligand is a peptide of 28 amino acids, in which the serine 3 residue is n-octanoylated. The acylated peptide specifically releases GH both in vivo and in vitro, and O-n-octanoylation at serine 3 is essential for the activity. We designate the GH-releasing peptide 'ghrelin' (ghre is the Proto-Indo-European root of the word 'grow'). Human ghrelin is homologous to rat ghrelin apart from two amino acids. The occurrence of ghrelin in both rat and human indicates that GH release from the pituitary may be regulated not only by hypothalamic GHRH, but also by ghrelin.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        A receptor in pituitary and hypothalamus that functions in growth hormone release.

        Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs. On the basis of its pharmacological and molecular characterization, this GPC-R defines a neuroendocrine pathway for the control of pulsatile GH release and supports the notion that the GHSs mimic an undiscovered hormone.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues.

          Growth hormone release is under tight control by two hypothalamic hormones: growth hormone-releasing hormone and somatostatin. In addition, synthetic growth hormone secretagogues have also been shown to regulate growth hormone release through the growth hormone secretagogue receptor (GHS-R), suggesting the existence of an additional physiological regulator for growth hormone release. To understand the physiological role of the GHS-R in more detail, we mapped the expression of mRNA for the receptor by in situ hybridization and RNase protection assays using rat and human tissues. In the rat brain, the major signals were detected in multiple hypothalamic nuclei as well as in the pituitary gland. Intense signals were also observed in the dentate gyrus of the hippocampal formation. Other brain areas that displayed localized and discrete signals for the receptor include the CA2 and CA3 regions of the hippocampus, the substantia nigra, ventral tegmental area, and dorsal and median raphe nuclei. In resemblance to the results from rat brain, RNase protection assays using human tissues revealed specific signals in pituitary, hypothalamus and hippocampus. Moreover, a weak signal was noted in the pancreas. The demonstration of hypothalamic and pituitary localization of the GHS-R is consistent with its role in regulating growth hormone release. The expression of the receptor in other central and peripheral regions may implicate its involvement in additional as yet undefined physiological functions.
            Bookmark

            Author and article information

            Journal
            10.1038/35038090
            11057670

            Comments

            Comment on this article