Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Isolation and characterization of endothelial progenitor cells from Rhesus monkeys

Regenerative Medicine Research

BioMed Central

monkey, characterization, cell proliferation, cell culture, isolation, epcs

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Background Endothelial progenitor cells (EPCs) are increasingly becoming a major focus of regenerative medicine research and practice. The present study was undertaken to establish an appropriate procedure for isolation and characterization of EPCs from Rhesus monkeys for regenerative medicine research. Result Selective CD34+ and nonselective mononuclear EPCs were isolated from bone marrow and cultured under varying conditions. The results showed that nonselective mononuclear EPCs were a better choice for high yield of the target cells. The cells grew in M 200 better than in EGM-2, and supplementation with fetal bovine serum promoted cell proliferation; but serum level at 7.5% was better than at 10%. In addition, surface coating of the culture dishes with human fibronectin significantly improved the proliferation and ontogeny of the isolated EPCs. Immunocytochemistry including detection of markers CD34, CD133 and CD31 and double-staining for Ac-LDL and lectin verified the purity of the cultured mononuclear EPCs. Conclusion By a thorough analysis, we established a practical procedure for isolation and propagation of EPCs from Rhesus monkeys. This procedure would help using these valuable cells for regenerative medicine research.

      Related collections

      Most cited references 29

      • Record: found
      • Abstract: found
      • Article: not found

      Isolation of putative progenitor endothelial cells for angiogenesis.

      Putative endothelial cell (EC) progenitors or angioblasts were isolated from human peripheral blood by magnetic bead selection on the basis of cell surface antigen expression. In vitro, these cells differentiated into ECs. In animal models of ischemia, heterologous, homologous, and autologous EC progenitors incorporated into sites of active angiogenesis. These findings suggest that EC progenitors may be useful for augmenting collateral vessel growth to ischemic tissues (therapeutic angiogenesis) and for delivering anti- or pro-angiogenic agents, respectively, to sites of pathologic or utilitarian angiogenesis.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Circulating endothelial progenitor cells, vascular function, and cardiovascular risk.

        Cardiovascular risk factors contribute to atherogenesis by inducing endothelial-cell injury and dysfunction. We hypothesized that endothelial progenitor cells derived from bone marrow have a role in ongoing endothelial repair and that impaired mobilization or depletion of these cells contributes to endothelial dysfunction and cardiovascular disease progression. We measured the number of colony-forming units of endothelial progenitor cells in peripheral-blood samples from 45 men (mean [+/-SE] age, 50+/-2 years). The subjects had various degrees of cardiovascular risk but no history of cardiovascular disease. Endothelium-dependent and endothelium-independent function was assessed by high-resolution ultrasonography of the brachial artery. We observed a strong correlation between the number of circulating endothelial progenitor cells and the subjects' combined Framingham risk factor score (r=-0.47, P=0.001). Measurement of flow-mediated brachial-artery reactivity also revealed a significant relation between endothelial function and the number of progenitor cells (r=0.59, P<0.001). Indeed, the levels of circulating endothelial progenitor cells were a better predictor of vascular reactivity than was the presence or absence of conventional risk factors. In addition, endothelial progenitor cells from subjects at high risk for cardiovascular events had higher rates of in vitro senescence than cells from subjects at low risk. In healthy men, levels of endothelial progenitor cells may be a surrogate biologic marker for vascular function and cumulative cardiovascular risk. These findings suggest that endothelial injury in the absence of sufficient circulating progenitor cells may affect the progression of cardiovascular disease. Copyright 2003 Massachusetts Medical Society
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors.

          Emerging data suggest that a subset of circulating human CD34(+) cells have phenotypic features of endothelial cells. Whether these cells are sloughed mature endothelial cells or functional circulating endothelial precursors (CEPs) is not known. Using monoclonal antibodies (MoAbs) to the extracellular domain of the human vascular endothelial receptor-2 (VEGFR-2), we have shown that 1.2 +/- 0.3% of CD34(+) cells isolated from fetal liver (FL), 2 +/- 0.5% from mobilized peripheral blood, and 1.4 +/- 0.5% from cord blood were VEGFR-2(+). In addition, most CD34(+)VEGFR-2(+) cells express hematopoietic stem cell marker AC133. Because mature endothelial cells do not express AC133, coexpression of VEGFR-2 and AC133 on CD34(+) cells phenotypically identifies a unique population of CEPs. CD34(+)VEGFR-2(+) cells express endothelial-specific markers, including VE-cadherin and E-selectin. Also, virtually all CD34(+)VEGFR-2(+) cells express the chemokine receptor CXCR4 and migrate in response to stromal-derived factor (SDF)-1 or VEGF. To quantitate the plating efficiency of CD34(+) cells that give rise to endothelial colonies, CD34(+) cells derived from FL were incubated with VEGF and fibroblast growth factor (FGF)-2. Subsequent isolation and plating of nonadherent FL-derived VEGFR-2(+) cells with VEGF and FGF-2 resulted in differentiation of AC133(+ )VEGFR-2(+) cells into adherent AC133(-)VEGFR-2(+)Ac-LDL(+ )(acetylated low-density lipoprotein) colonies (plating efficiency of 3%). In an in vivo human model, we have found that the neo-intima formed on the surface of left ventricular assist devices is colonized with AC133(+)VEGFR-2(+) cells. These data suggest that circulating CD34(+) cells expressing VEGFR-2 and AC133 constitute a phenotypically and functionally distinct population of circulating endothelial cells that may play a role in neo-angiogenesis.
            Bookmark

            Author and article information

            Journal
            10.1186/2050-490X-2-5
            4389970
            25984333

            http://creativecommons.org/licenses/by/2.0

            Comments

            Comment on this article