Blog
About

3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      On-field Rehabilitation Part 1: 4 Pillars of High-Quality On-field Rehabilitation Are Restoring Movement Quality, Physical Conditioning, Restoring Sport-Specific Skills, and Progressively Developing Chronic Training Load

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 38

          • Record: found
          • Abstract: found
          • Article: not found

          Principles of sensorimotor learning.

          The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries.

            Variations in definitions and methodologies have created differences in the results and conclusions obtained from studies of football (soccer) injuries, making interstudy comparisons difficult. Therefore an Injury Consensus Group was established under the auspices of Fédération Internationale de Football Association Medical Assessment and Research Centre. A nominal group consensus model approach was used. A working document on definitions, methodology, and implementation was discussed by the group. Iterative draft statements were prepared and circulated to members of the group for comment before the final consensus statement was produced. Definitions of injury, recurrent injury, severity, and training and match exposures in football together with criteria for classifying injuries in terms of location, type, diagnosis, and causation are proposed. Proforma for recording players' baseline information, injuries, and training and match exposures are presented. Recommendations are made on how the incidence of match and training injuries should be reported and a checklist of issues and information that should be included in published reports of studies of football injuries is presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The training—injury prevention paradox: should athletes be training smarter and harder?

               Tim Gabbett (2016)
              Background There is dogma that higher training load causes higher injury rates. However, there is also evidence that training has a protective effect against injury. For example, team sport athletes who performed more than 18 weeks of training before sustaining their initial injuries were at reduced risk of sustaining a subsequent injury, while high chronic workloads have been shown to decrease the risk of injury. Second, across a wide range of sports, well-developed physical qualities are associated with a reduced risk of injury. Clearly, for athletes to develop the physical capacities required to provide a protective effect against injury, they must be prepared to train hard. Finally, there is also evidence that under-training may increase injury risk. Collectively, these results emphasise that reductions in workloads may not always be the best approach to protect against injury. Main thesis This paper describes the ‘Training-Injury Prevention Paradox’ model; a phenomenon whereby athletes accustomed to high training loads have fewer injuries than athletes training at lower workloads. The Model is based on evidence that non-contact injuries are not caused by training per se, but more likely by an inappropriate training programme. Excessive and rapid increases in training loads are likely responsible for a large proportion of non-contact, soft-tissue injuries. If training load is an important determinant of injury, it must be accurately measured up to twice daily and over periods of weeks and months (a season). This paper outlines ways of monitoring training load (‘internal’ and ‘external’ loads) and suggests capturing both recent (‘acute’) training loads and more medium-term (‘chronic’) training loads to best capture the player's training burden. I describe the critical variable—acute:chronic workload ratio—as a best practice predictor of training-related injuries. This provides the foundation for interventions to reduce players risk, and thus, time-loss injuries. Summary The appropriately graded prescription of high training loads should improve players’ fitness, which in turn may protect against injury, ultimately leading to (1) greater physical outputs and resilience in competition, and (2) a greater proportion of the squad available for selection each week.
                Bookmark

                Author and article information

                Journal
                Journal of Orthopaedic & Sports Physical Therapy
                J Orthop Sports Phys Ther
                Journal of Orthopaedic & Sports Physical Therapy (JOSPT)
                0190-6011
                1938-1344
                July 10 2019
                July 10 2019
                : 1-5
                Affiliations
                [1 ]Isokinetic Medical Group, Education and Research Department, FIFA Medical Centre of Excellence, Bologna, Italy.
                Article
                10.2519/jospt.2019.8954
                © 2019
                Product

                Comments

                Comment on this article