Blog
About

4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reduced nuclear translocation of serum response factor is associated with skeletal muscle atrophy in a cigarette smoke-induced mouse model of COPD

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skeletal muscle atrophy and dysfunction are common complications in the chronic obstructive pulmonary disease (COPD). However, the underlying molecular mechanism remains elusive. Serum response factor (SRF) is a transcription factor which is critical in myocyte differentiation and growth. In this study, we established a mouse COPD model induced by cigarette smoking (CS) exposure for 24 weeks, with apparent pathophysiological changes, including increased airway resistance, enlarged alveoli, and skeletal muscle atrophy. Levels of upstream regulators of SRF, striated muscle activator of Rho signaling (STARS), and ras homolog gene family, member A (RhoA) were decreased in quadriceps muscle of COPD mice. Meanwhile, the nucleic location of SRF was diminished along with its cytoplasmic accumulation. There was a downregulation of the target muscle-specific gene, Igf1. These results suggest that the CS is one of the major causes for COPD pathogenesis, which induces the COPD-associated skeletal muscle atrophy which is closely related to decreasing SRF nucleic translocation, consequently downregulating the SRF target genes involved in muscle growth and nutrition. The STARS/RhoA signaling pathway might contribute to this course by impacting SRF subcellular distribution.

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          Signal-regulated activation of serum response factor is mediated by changes in actin dynamics.

          Serum response factor (SRF) regulates transcription of many serum-inducible and muscle-specific genes. Using a functional screen, we identified LIM kinase-1 as a potent activator of SRF. We show that SRF activation by LIM kinase-1 is dependent on its ability to regulate actin treadmilling. LIM kinase activity is not essential for SRF activation by serum, but signals depend on alterations in actin dynamics. Studies with actin-binding drugs, the actin-specific C2 toxin, and actin overexpression demonstrate that G-actin level controls SRF. Regulation of actin dynamics is necessary for serum induction of a subset of SRF target genes, including vinculin, cytoskeletal actin, and srf itself, and also suffices for their activation. Actin treadmilling provides a convergence point for both serum- and LIM kinase-1-induced signaling to SRF.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Skeletal muscle dysfunction in chronic obstructive pulmonary disease. A statement of the American Thoracic Society and European Respiratory Society.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD

              Rationale Muscle atrophy confers a poor prognosis in patients with chronic obstructive pulmonary disease (COPD), yet the molecular pathways responsible are poorly characterised. Muscle-specific microRNAs and serum response factor (SRF) are important regulators of muscle phenotype that contribute to a feedback system to regulate muscle gene expression. The role of these factors in the skeletal muscle dysfunction that accompanies COPD is unknown. Methods 31 patients with COPD and 14 healthy age-matched controls underwent lung and quadriceps function assessments, measurement of daily activity and a percutaneous quadriceps muscle biopsy. The expression of muscle-specific microRNAs, myosin heavy chains and components of the serum response factor signalling pathway were determined by qPCR. Results A reduction in expression of miR-1 (2.5-fold, p=0.01) and the myocardin-related transcription factors (MRTFs) A and B was observed in patients compared with controls (MRTF-A mRNA: twofold, p=0.028; MRTF-B mRNA: fourfold, p=0.011). miR-1 expression was associated with smoking history, lung function, fat-free mass index, 6 min walk distance and percentage of type 1 fibres. miR-133 and miR-206 were negatively correlated with daily physical activity. Insulin-like growth factor 1 mRNA was increased in the patients and miR-1 was negatively correlated with phosphorylation of the kinase Akt. Furthermore, the protein levels of histone deacetylase 4, another miR-1 target, were increased in the patients. Conclusions Downregulation of the activity of the MRTF-SRF axis and the expression of muscle-specific microRNAs, particularly miR-1, may contribute to COPD-associated skeletal muscle dysfunction.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2017
                20 February 2017
                : 12
                : 581-587
                Affiliations
                Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
                Author notes
                Correspondence: Nanshan Zhong; Wenju Lu, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The 1st Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong 510120, People’s Republic of China, Tel +86 20 8306 2888, Fax +86 20 8306 2729, Email nanshan@ 123456vip.163.com ; wlu92@ 123456yahoo.com
                Article
                copd-12-581
                10.2147/COPD.S109243
                5327903
                © 2017 Ma et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article