9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Toxicological estimation of mortality of oceanic sea turtles oiled during the Deepwater Horizon oil spill

      , ,
      Endangered Species Research
      Inter-Research Science Center

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Review of flow rate estimates of the Deepwater Horizon oil spill.

          The unprecedented nature of the Deepwater Horizon oil spill required the application of research methods to estimate the rate at which oil was escaping from the well in the deep sea, its disposition after it entered the ocean, and total reservoir depletion. Here, we review what advances were made in scientific understanding of quantification of flow rates during deep sea oil well blowouts. We assess the degree to which a consensus was reached on the flow rate of the well by comparing in situ observations of the leaking well with a time-dependent flow rate model derived from pressure readings taken after the Macondo well was shut in for the well integrity test. Model simulations also proved valuable for predicting the effect of partial deployment of the blowout preventer rams on flow rate. Taken together, the scientific analyses support flow rates in the range of ∼50,000-70,000 barrels/d, perhaps modestly decreasing over the duration of the oil spill, for a total release of ∼5.0 million barrels of oil, not accounting for BP's collection effort. By quantifying the amount of oil at different locations (wellhead, ocean surface, and atmosphere), we conclude that just over 2 million barrels of oil (after accounting for containment) and all of the released methane remained in the deep sea. By better understanding the fate of the hydrocarbons, the total discharge can be partitioned into separate components that pose threats to deep sea vs. coastal ecosystems, allowing responders in future events to scale their actions accordingly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Health of common bottlenose dolphins ( Tursiops truncatus ) in Barataria Bay, Louisiana, following the deepwater horizon oil spill.

            The oil spill resulting from the explosion of the Deepwater Horizon drilling platform initiated immediate concern for marine wildlife, including common bottlenose dolphins in sensitive coastal habitats. To evaluate potential sublethal effects on dolphins, health assessments were conducted in Barataria Bay, Louisiana, an area that received heavy and prolonged oiling, and in a reference site, Sarasota Bay, Florida, where oil was not observed. Dolphins were temporarily captured, received a veterinary examination, and were then released. Dolphins sampled in Barataria Bay showed evidence of hypoadrenocorticism, consistent with adrenal toxicity as previously reported for laboratory mammals exposed to oil. Barataria Bay dolphins were 5 times more likely to have moderate-severe lung disease, generally characterized by significant alveolar interstitial syndrome, lung masses, and pulmonary consolidation. Of 29 dolphins evaluated from Barataria Bay, 48% were given a guarded or worse prognosis, and 17% were considered poor or grave, indicating that they were not expected to survive. Disease conditions in Barataria Bay dolphins were significantly greater in prevalence and severity than those in Sarasota Bay dolphins, as well as those previously reported in other wild dolphin populations. Many disease conditions observed in Barataria Bay dolphins are uncommon but consistent with petroleum hydrocarbon exposure and toxicity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Stress, reproduction, and adrenocortical modulation in amphibians and reptiles

                Bookmark

                Author and article information

                Journal
                Endangered Species Research
                Endang. Species. Res.
                Inter-Research Science Center
                1863-5407
                1613-4796
                January 31 2017
                January 31 2017
                : 33
                :
                : 39-50
                Article
                10.3354/esr00758
                bc9fc642-e615-441d-9199-c1c3fc71f83f
                © 2017
                History

                Comments

                Comment on this article