27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NOX2 Antisense Attenuates Hypoxia-Induced Oxidative Stress and Apoptosis in Cardiomyocyte

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heart ischemia is a hypoxia related disease. NOX2 and HIF-1α proteins were increased in cardiomyocytes after acute myocardial infarction. However, the relationship of the hypoxia-induced HIF-1α. NOX2-derived oxidative stress and apoptosis in cardiomyocyte remains unclear. In the current study, we use NOX2 antisense strategy to investigate the role of NOX2 in hypoxia-induced oxidative stress and apoptosis in rat cardiomyocytes. Here, we show that transduction of ADV-NOX2-AS induces potent silencing of NOX2 in cardiomyocytes, and resulting in attenuation of hypoxia-induced oxidative stress and apoptosis. This study indicates the potential of antisense-based therapies and validates NOX2 as a potent therapeutic candidate for heart ischemia.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing.

          Multicellular organisms initiate adaptive responses when oxygen (O(2)) availability decreases, but the underlying mechanism of O(2) sensing remains elusive. We find that functionality of complex III of the mitochondrial electron transport chain (ETC) is required for the hypoxic stabilization of HIF-1 alpha and HIF-2 alpha and that an increase in reactive oxygen species (ROS) links this complex to HIF-alpha stabilization. Using RNAi to suppress expression of the Rieske iron-sulfur protein of complex III, hypoxia-induced HIF-1 alpha stabilization is attenuated, and ROS production, measured using a novel ROS-sensitive FRET probe, is decreased. These results demonstrate that mitochondria function as O(2) sensors and signal hypoxic HIF-1 alpha and HIF-2 alpha stabilization by releasing ROS to the cytosol.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.

            Inhibition of mitochondrial respiratory chain complex I by rotenone had been found to induce cell death in a variety of cells. However, the mechanism is still elusive. Because reactive oxygen species (ROS) play an important role in apoptosis and inhibition of mitochondrial respiratory chain complex I by rotenone was thought to be able to elevate mitochondrial ROS production, we investigated the relationship between rotenone-induced apoptosis and mitochondrial reactive oxygen species. Rotenone was able to induce mitochondrial complex I substrate-supported mitochondrial ROS production both in isolated mitochondria from HL-60 cells as well as in cultured cells. Rotenone-induced apoptosis was confirmed by DNA fragmentation, cytochrome c release, and caspase 3 activity. A quantitative correlation between rotenone-induced apoptosis and rotenone-induced mitochondrial ROS production was identified. Rotenone-induced apoptosis was inhibited by treatment with antioxidants (glutathione, N-acetylcysteine, and vitamin C). The role of rotenone-induced mitochondrial ROS in apoptosis was also confirmed by the finding that HT1080 cells overexpressing magnesium superoxide dismutase were more resistant to rotenone-induced apoptosis than control cells. These results suggest that rotenone is able to induce apoptosis via enhancing the amount of mitochondrial reactive oxygen species production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene therapy using adeno-associated virus vectors.

              S Daya, K Berns (2008)
              The unique life cycle of adeno-associated virus (AAV) and its ability to infect both nondividing and dividing cells with persistent expression have made it an attractive vector. An additional attractive feature of the wild-type virus is the lack of apparent pathogenicity. Gene transfer studies using AAV have shown significant progress at the level of animal models; clinical trials have been noteworthy with respect to the safety of AAV vectors. No proven efficacy has been observed, although in some instances, there have been promising observations. In this review, topics in AAV biology are supplemented with a section on AAV clinical trials with emphasis on the need for a deeper understanding of AAV biology and the development of efficient AAV vectors. In addition, several novel approaches and recent findings that promise to expand AAV's utility are discussed, especially in the context of combining gene therapy ex vivo with new advances in stem or progenitor cell biology.
                Bookmark

                Author and article information

                Journal
                Int J Med Sci
                Int J Med Sci
                ijms
                International Journal of Medical Sciences
                Ivyspring International Publisher (Sydney )
                1449-1907
                2016
                27 July 2016
                : 13
                : 8
                : 646-652
                Affiliations
                Department of cardiology, China-Japan union hospital of Jilin University, Changchun, Jilin, 130033, P.R. China
                Author notes
                ✉ Corresponding author: Dr. Kaiyao Shi, Department of cardiology, China-Japan union hospital of Jilin University, Changchun, Jilin,130033, P.R. China. 126 Xiantai Street, Changchun, Jilin, P.R. China. Tel.: 0431-84995308, Fax: 0431-84641026, E-Mail: shiky@ 123456jlu.edu.cn

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijmsv13p0646
                10.7150/ijms.15177
                4974913
                27499697
                bcb188e0-7513-4245-b499-350c487bb597
                © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions.
                History
                : 2 February 2016
                : 25 June 2016
                Categories
                Research Paper

                Medicine
                heart ischemia,heart infarction,nox2,oxidative stress,and apoptosis
                Medicine
                heart ischemia, heart infarction, nox2, oxidative stress, and apoptosis

                Comments

                Comment on this article