21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes

      research-article
      1 , * , 1 , 1 , 2
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA interference (RNAi)-related pathways target viruses and transposable element (TE) transcripts in plants, fungi, and ecdysozoans (nematodes and arthropods), giving protection against infection and transmission. In each case, this produces abundant TE and virus-derived 20-30nt small RNAs, which provide a characteristic signature of RNAi-mediated defence. The broad phylogenetic distribution of the Argonaute and Dicer-family genes that mediate these pathways suggests that defensive RNAi is ancient, and probably shared by most animal (metazoan) phyla. Indeed, while vertebrates had been thought an exception, it has recently been argued that mammals also possess an antiviral RNAi pathway, although its immunological relevance is currently uncertain and the viral small RNAs (viRNAs) are not easily detectable. Here we use a metagenomic approach to test for the presence of viRNAs in five species from divergent animal phyla (Porifera, Cnidaria, Echinodermata, Mollusca, and Annelida), and in a brown alga—which represents an independent origin of multicellularity from plants, fungi, and animals. We use metagenomic RNA sequencing to identify around 80 virus-like contigs in these lineages, and small RNA sequencing to identify viRNAs derived from those viruses. We identified 21U small RNAs derived from an RNA virus in the brown alga, reminiscent of plant and fungal viRNAs, despite the deep divergence between these lineages. However, contrary to our expectations, we were unable to identify canonical (i.e. Drosophila- or nematode-like) viRNAs in any of the animals, despite the widespread presence of abundant micro-RNAs, and somatic transposon-derived piwi-interacting RNAs. We did identify a distinctive group of small RNAs derived from RNA viruses in the mollusc. However, unlike ecdysozoan viRNAs, these had a piRNA-like length distribution but lacked key signatures of piRNA biogenesis. We also identified primary piRNAs derived from putatively endogenous copies of DNA viruses in the cnidarian and the echinoderm, and an endogenous RNA virus in the mollusc. The absence of canonical virus-derived small RNAs from our samples may suggest that the majority of animal phyla lack an antiviral RNAi response. Alternatively, these phyla could possess an antiviral RNAi response resembling that reported for vertebrates, with cryptic viRNAs not detectable through simple metagenomic sequencing of wild-type individuals. In either case, our findings show that the antiviral RNAi responses of arthropods and nematodes, which are highly divergent from each other and from that of plants and fungi, are also highly diverged from the most likely ancestral metazoan state.

          Author summary

          The presence of abundant virus-derived small RNAs in infected plants, fungi, nematodes, and arthropods suggests that Dicer-dependent antiviral RNAi is an ancient and conserved defence. Using metagenomic sequencing from wild-caught organisms we find that antiviral RNAi is variable across animals. We identify a distinctive group of virus-derived small RNAs in a mollusc, which have a piRNA-like length distribution but lack key signatures of piRNA biogenesis. We also report a group of 21U virus-derived small RNAs in a brown alga, which represents an origin of multicellularity separate from that of plants, fungi, and animals. The absence of virus-derived small RNAs from most of our animal samples may suggest either that the majority of animal phyla lack an antiviral RNAi response, or that these phyla possess an antiviral RNAi response resembling that reported for vertebrates, which is not detectable through simple metagenomic sequencing of wild-type individuals. In addition, we report abundant somatic piRNAs across anciently divergent animals suggesting that this is the ancestral state in Bilateria. Our study challenges a widely-held assumption that most invertebrates possess an antiviral RNAi pathway likely similar to that seen in Drosophila, other arthropods, and nematodes.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple sequence alignment with the Clustal series of programs.

          R Chenna (2003)
          The Clustal series of programs are widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees. The popularity of the programs depends on a number of factors, including not only the accuracy of the results, but also the robustness, portability and user-friendliness of the programs. New features include NEXUS and FASTA format output, printing range numbers and faster tree calculation. Although, Clustal was originally developed to run on a local computer, numerous Web servers have been set up, notably at the EBI (European Bioinformatics Institute) (http://www.ebi.ac.uk/clustalw/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel class of small RNAs bind to MILI protein in mouse testes.

            Small RNAs bound to Argonaute proteins recognize partially or fully complementary nucleic acid targets in diverse gene-silencing processes. A subgroup of the Argonaute proteins--known as the 'Piwi family'--is required for germ- and stem-cell development in invertebrates, and two Piwi members--MILI and MIWI--are essential for spermatogenesis in mouse. Here we describe a new class of small RNAs that bind to MILI in mouse male germ cells, where they accumulate at the onset of meiosis. The sequences of the over 1,000 identified unique molecules share a strong preference for a 5' uridine, but otherwise cannot be readily classified into sequence families. Genomic mapping of these small RNAs reveals a limited number of clusters, suggesting that these RNAs are processed from long primary transcripts. The small RNAs are 26-31 nucleotides (nt) in length--clearly distinct from the 21-23 nt of microRNAs (miRNAs) or short interfering RNAs (siRNAs)--and we refer to them as 'Piwi-interacting RNAs' or piRNAs. Orthologous human chromosomal regions also give rise to small RNAs with the characteristics of piRNAs, but the cloned sequences are distinct. The identification of this new class of small RNAs provides an important starting point to determine the molecular function of Piwi proteins in mammalian spermatogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing.

              RNAi is a gene-silencing phenomenon triggered by double-stranded (ds) RNA and involves the generation of 21 to 26 nt RNA segments that guide mRNA destruction. In Caenorhabditis elegans, lin-4 and let-7 encode small temporal RNAs (stRNAs) of 22 nt that regulate stage-specific development. Here we show that inactivation of genes related to RNAi pathway genes, a homolog of Drosophila Dicer (dcr-1), and two homologs of rde-1 (alg-1 and alg-2), cause heterochronic phenotypes similar to lin-4 and let-7 mutations. Further we show that dcr-1, alg-1, and alg-2 are necessary for the maturation and activity of the lin-4 and let-7 stRNAs. Our findings suggest that a common processing machinery generates guide RNAs that mediate both RNAi and endogenous gene regulation.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                30 July 2018
                July 2018
                : 14
                : 7
                : e1007533
                Affiliations
                [1 ] Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
                [2 ] Centre for Immunity Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
                University of Cambridge, UNITED KINGDOM
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-2622-0776
                http://orcid.org/0000-0001-5392-8142
                Article
                PGENETICS-D-18-00517
                10.1371/journal.pgen.1007533
                6085071
                30059538
                bcc1c078-e3c0-4edf-a7bd-d1c4a1b830ba
                © 2018 Waldron et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 March 2018
                : 4 July 2018
                Page count
                Figures: 5, Tables: 0, Pages: 37
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100000275, Leverhulme Trust;
                Award ID: RPG-2013-168
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100004440, Wellcome Trust;
                Award ID: WT095831
                Award Recipient :
                This work was funded by a Leverhulme Trust grant to DJO, GNS and FMW (RPG-2013-168; https://www.leverhulme.ac.uk/), and work in DJO’s lab was partly supported by a Wellcome Trust strategic award to the Centre for Immunity, Infection and Evolution (WT095831; http://www.wellcome.ac.uk/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Genetics
                Epigenetics
                RNA interference
                Biology and life sciences
                Genetics
                Gene expression
                RNA interference
                Biology and life sciences
                Genetics
                Genetic interference
                RNA interference
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA interference
                Biology and life sciences
                Molecular biology
                Molecular biology techniques
                Sequencing techniques
                RNA sequencing
                Research and analysis methods
                Molecular biology techniques
                Sequencing techniques
                RNA sequencing
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amniotes
                Mammals
                Dogs
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Cnidaria
                Sea Anemones
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Echinoderms
                Starfish
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                dsRNA viruses
                Biology and Life Sciences
                Organisms
                Eukaryota
                Plants
                Algae
                Custom metadata
                vor-update-to-uncorrected-proof
                2018-08-09
                Raw reads from RNAseq and small RNA sequencing are available from the NCBI Sequence Read Archive under BioProject accession PRJNA394213. Virus sequences (accession numbers MF189971-MF190055), and host RNAi gene sequences (accession numbers MF288049-MF288076), are available through GenBank. For each of the six species pools, the raw meta-transcriptomic contigs generated by Trinity are provided in compressed (gzipped) fasta format as unannotated contigs through the figshare repository doi: 10.6084/m9.figshare.6803885.v1 ( https://doi.org/10.6084/m9.figshare.6803885.v1).

                Genetics
                Genetics

                Comments

                Comment on this article