Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Structural SCOP Superfamily Level Classification Using Unsupervised Machine Learning

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the major research directions in bioinformatics is that of assigning superfamily classification to a given set of proteins. The classification reflects the structural, evolutionary, and functional relatedness. These relationships are embodied in a hierarchical classification, such as the Structural Classification of Protein (SCOP), which is mostly manually curated. Such a classification is essential for the structural and functional analyses of proteins. Yet a large number of proteins remain unclassified. In this study, we have proposed an unsupervised machine learning approach to classify and assign a given set of proteins to SCOP superfamilies. In the method, we have constructed a database and similarity matrix using P-values obtained from an all-against-all BLAST run and trained the network with the ART2 unsupervised learning algorithm using the rows of the similarity matrix as input vectors, enabling the trained network to classify the proteins from 0.82 to 0.97 f-measure accuracy. The performance of ART2 has been compared with that of spectral clustering, Random forest, SVM, and HHpred. ART2 performs better than the others except HHpred. HHpred performs better than ART2 and the sum of errors is smaller than that of the other methods evaluated.

          Related collections

          Author and article information

          Journal
          IEEE/ACM Transactions on Computational Biology and Bioinformatics
          IEEE/ACM Trans. Comput. Biol. and Bioinf.
          Institute of Electrical and Electronics Engineers (IEEE)
          1545-5963
          March 2012
          March 2012
          : 9
          : 2
          : 601-608
          Article
          10.1109/TCBB.2011.114
          21844638
          © 2012
          Product

          Comments

          Comment on this article