42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Photodynamic therapy inhibits p-glycoprotein mediated multidrug resistance via JNK activation in human hepatocellular carcinoma using the photosensitizer pheophorbide a

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Multidrug resistance (MDR) is frequently observed after prolonged treatment in human hepatoma with conventional anti-tumor drugs, and photodynamic therapy (PDT) is a recently suggested alternative to overcome MDR. The therapeutic potential of PDT was evaluated in a multidrug resistance (MDR) human hepatoma cell line R-HepG2 with photosensitizer pheophorbide a (Pa).

          Results

          Our results demonstrated that intracellular accumulation of Pa was not reduced by the overexpression of P-glycoprotein. Pa-based PDT (Pa-PDT) significantly inhibited the growth of R-HepG2 cells with an IC50 value of 0.6 μM. Mechanistic study demonstrated that genomic DNA fragmentation and phosphatidylserine externalization occurred where increase of intracellular singlet oxygen level triggers the phosphorylation of c-Jun N-terminal Kinase (JNK) and leads to activation of intrinsic apoptotic caspases cascade during the Pa-PDT treatment. The cytotoxicity of Pa-PDT, accumulation of sub-G1 population, and depolarization of mitochondrial membrane could be inhibited by JNK inhibitor in the Pa-PDT treated cells. Interestingly, the Pa-PDT induced JNK activation showed inhibitory effect on MDR by the down-regulation of P-glycoprotein in R-HepG2 cells in a dose-dependent manner. In addition, significant reduction of tumor size was obtained in Pa-PDT treated R-HepG2-bearing nude mice with no significant damages in liver and heart.

          Conclusion

          In summary, our findings provided the first evidence that PDT could inhibit the MDR activity by down-regulating the expression of P-glycoprotein via JNK activation using pheophorbide a as the photosensitizer, and our work proved that Pa-PDT inhibited the growth of MDR hepatoma cells by mitochondrial-mediated apoptosis induction.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer genes and the pathways they control.

          The revolution in cancer research can be summed up in a single sentence: cancer is, in essence, a genetic disease. In the last decade, many important genes responsible for the genesis of various cancers have been discovered, their mutations precisely identified, and the pathways through which they act characterized. The purposes of this review are to highlight examples of progress in these areas, indicate where knowledge is scarce and point out fertile grounds for future investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The history of photodetection and photodynamic therapy.

            Light has been employed in the treatment of disease since antiquity. Many ancient civilizations utilized phototherapy, but it was not until early last century that this form of therapy reappeared. Following the scientific discoveries by early pioneers such as Finsen, Raab and Von Tappeiner, the combination of light and drug administration led to the emergence of photochemotherapy as a therapeutic tool. The isolation of porphyrins and the subsequent discovery of their tumor-localizing properties and phototoxic effects on tumor tissue led to the development of modern photodetection (PD) and photodynamic therapy (PDT). This review traces the origins and development of PD and PDT from antiquity to the present day.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of ABC transporters in drug resistance, metabolism and toxicity.

              ATP Binding Cassette (ABC) transporters form a special family of membrane proteins, characterized by homologous ATP-binding, and large, multispanning transmembrane domains. Several members of this family are primary active transporters, which significantly modulate the absorption, metabolism, cellular effectivity and toxicity of pharmacological agents. This review provides a general overview of the human ABC transporters, their expression, localization and basic mechanism of action. Then we shortly deal with the human ABC transporters as targets of therapeutic interventions in medicine, including cancer drug resistance, lipid and other metabolic disorders, and even gene therapy applications. We place a special emphasis on the three major groups of ABC transporters involved in cancer multidrug resistance (MDR). These are the classical P-glycoprotein (MDR1, ABCB1), the multidrug resistance associated proteins (MRPs, in the ABCC subfamily), and the ABCG2 protein, an ABC half-transporter. All these proteins catalyze an ATP-dependent active transport of chemically unrelated compounds, including anticancer drugs. MDR1 (P-glycoprotein) and ABCG2 preferentially extrude large hydrophobic, positively charged molecules, while the members of the MRP family can extrude both hydrophobic uncharged molecules and water-soluble anionic compounds. Based on the physiological expression and role of these transporters, we provide examples for their role in Absorption-Distribution-Metabolism-Excretion (ADME) and toxicology, and describe several basic assays which can be applied for screening drug interactions with ABC transporters in the course of drug research and development.
                Bookmark

                Author and article information

                Journal
                Mol Cancer
                Molecular Cancer
                BioMed Central
                1476-4598
                2009
                31 July 2009
                : 8
                : 56
                Affiliations
                [1 ]School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, PR China
                [2 ]Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, PR China
                [3 ]Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, PR China
                Article
                1476-4598-8-56
                10.1186/1476-4598-8-56
                2731730
                19646254
                bce8b2e9-2548-4c8e-8f0c-2b006a10eb68
                Copyright © 2009 Tang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 March 2009
                : 31 July 2009
                Categories
                Research

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article