11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of Fcj1-Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondrial DNA nucleoids are distributed as many discrete foci in mitochondria. Nucleoid distribution is controlled by mitochondrial division and Fcj1 and Mos1, two evolutionarily conserved, mitochondrial proteins that maintain cristae junctions and tubular organelle morphology.

          Abstract

          Mitochondrial DNA (mtDNA) is packaged into DNA–protein complexes called nucleoids, which are distributed as many small foci in mitochondria. Nucleoids are crucial for the biogenesis and function of mtDNA. Here, using a yeast genetic screen for components that control nucleoid distribution and size, we identify Fcj1 and Mos1, two evolutionarily conserved mitochondrial proteins that maintain the connection between the cristae and boundary membranes. These two proteins are also important for establishing tubular morphology of mitochondria, as mitochondria lacking Fcj1 and Mos1 form lamellar sheets. We find that nucleoids aggregate, increase in size, and decrease in number in fcj1∆ and mos1∆ cells. In addition, Fcj1 form punctate structures and localized adjacent to nucleoids. Moreover, connecting mitochondria by deleting the DNM1 gene required for organelle division enhances aggregation of mtDNA nucleoids in fcj1∆ and mos1∆ cells, whereas single deletion of DNM1 does not affect nucleoids. Conversely, deleting F1Fo-ATP synthase dimerization factors generates concentric ring-like cristae, restores tubular mitochondrial morphology, and suppresses nucleoid aggregation in these mutants. Our findings suggest an unexpected role of Fcj1-Mos1 and organelle division in maintaining the distribution and size of mtDNA nucleoids.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          An ER-mitochondria tethering complex revealed by a synthetic biology screen.

          Communication between organelles is an important feature of all eukaryotic cells. To uncover components involved in mitochondria/endoplasmic reticulum (ER) junctions, we screened for mutants that could be complemented by a synthetic protein designed to artificially tether the two organelles. We identified the Mmm1/Mdm10/Mdm12/Mdm34 complex as a molecular tether between ER and mitochondria. The tethering complex was composed of proteins resident of both ER and mitochondria. With the use of genome-wide mapping of genetic interactions, we showed that the components of the tethering complex were functionally connected to phospholipid biosynthesis and calcium-signaling genes. In mutant cells, phospholipid biosynthesis was impaired. The tethering complex localized to discrete foci, suggesting that discrete sites of close apposition between ER and mitochondria facilitate interorganelle calcium and phospholipid exchange.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mitochondrial contact site complex, a determinant of mitochondrial architecture.

            Mitochondria are organelles with a complex architecture. They are bounded by an envelope consisting of the outer membrane and the inner boundary membrane (IBM). Narrow crista junctions (CJs) link the IBM to the cristae. OMs and IBMs are firmly connected by contact sites (CS). The molecular nature of the CS remained unknown. Using quantitative high-resolution mass spectrometry we identified a novel complex, the mitochondrial contact site (MICOS) complex, formed by a set of mitochondrial membrane proteins that is essential for the formation of CS. MICOS is preferentially located at the CJs. Upon loss of one of the MICOS subunits, CJs disappear completely or are impaired, showing that CJs require the presence of CS to form a superstructure that links the IBM to the cristae. Loss of MICOS subunits results in loss of respiratory competence and altered inheritance of mitochondrial DNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial DNA mutations in disease and aging.

              The human mitochondrial genome involves over 1,000 genes, dispersed across the maternally inherited mitochondrial DNA (mtDNA) and the biparentally inherited nuclear DNA (nDNA). The mtDNA encodes 13 core proteins that determine the efficiency of the mitochondrial energy-generating system, oxidative phosphorylation (OXPHOS), plus the RNA genes for their translation within the mitochondrion. The mtDNA has a very high mutation rate, which results in three classes of clinically relevant mtDNA mutations: recently deleterious germline line mutations resulting in mitochondrial disease; ancient regional variants, a subset of which permitted humans to adapt to differences in their energetic environments; and somatic mutations that accumulate with age eroding mitochondrial energy production and providing the aging clock. Mutations in nDNA-encoded OXPHOS structural genes can also cause mitochondrial disease, and alterations in nDNA mitochondrial biogenesis genes can destabilize the mtDNA and lead to clinical phenotypes. Finally, when combined, nonpathogenic nDNA and mtDNA protein variants can be functionally incompatible and cause disease. The essential functions of the conserved mtDNA proteins and their high mutation rate raise the question as to why the cumulative mtDNA genetic load does not result in species extinction. Studies of mice harboring deleterious mtDNA mutations have shown that the mammalian ovary selectively eliminates the most deleterious mtDNA mutations. However, milder mtDNA mutations are transmitted through the ovary and the female germline and introduced into the general population. This unique genetic system provides a flexible method for generating genetic variation in cellular and organismal energetics that permits species to adapt to alterations in their regional energetic environment.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 June 2013
                : 24
                : 12
                : 1842-1851
                Affiliations
                Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
                Cornell University
                Author notes
                1Address correspondence to: Hiromi Sesaki ( hsesaki@ 123456jhmi.edu ) and Miho Iijima ( miijima@ 123456jhmi.edu ).
                Article
                E13-03-0125
                10.1091/mbc.E13-03-0125
                3681690
                23615445
                bceb5c30-52e4-4660-83d7-0436729c90da
                © 2013 Itoh et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 06 March 2013
                : 10 April 2013
                : 17 April 2013
                Categories
                Articles
                Biosynthesis and Biodegradation

                Molecular biology
                Molecular biology

                Comments

                Comment on this article