85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early Priming Minimizes the Age-Related Immune Compromise of CD8 + T Cell Diversity and Function

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The elderly are particularly susceptible to influenza A virus infections, with increased occurrence, disease severity and reduced vaccine efficacy attributed to declining immunity. Experimentally, the age-dependent decline in influenza-specific CD8 + T cell responsiveness reflects both functional compromise and the emergence of ‘repertoire holes’ arising from the loss of low frequency clonotypes. In this study, we asked whether early priming limits the time-related attrition of immune competence. Though primary responses in aged mice were compromised, animals vaccinated at 6 weeks then challenged >20 months later had T-cell responses that were normal in magnitude. Both functional quality and the persistence of ‘preferred’ TCR clonotypes that expand in a characteristic immunodominance hierarchy were maintained following early priming. Similar to the early priming, vaccination at 22 months followed by challenge retained a response magnitude equivalent to young mice. However, late priming resulted in reduced TCRβ diversity in comparison with vaccination earlier in life. Thus, early priming was critical to maintaining individual and population-wide TCRβ diversity. In summary, early exposure leads to the long-term maintenance of memory T cells and thus preserves optimal, influenza-specific CD8 + T-cell responsiveness and protects against the age-related attrition of naïve T-cell precursors. Our study supports development of vaccines that prime CD8 + T-cells early in life to elicit the broadest possible spectrum of CD8 + T-cell memory and preserve the magnitude, functionality and TCR usage of responding populations. In addition, our study provides the most comprehensive analysis of the aged (primary, secondary primed-early and secondary primed-late) TCR repertoires published to date.

          Author Summary

          The elderly population is particularly susceptible to novel infections, especially the annual, seasonal epidemics caused by influenza viruses. Established T cell immunity directed at conserved viral regions provides some protection against influenza infection and promotes more rapid recovery, thus leading to better clinical outcomes. We asked whether priming early in life limits the time-related attrition of immune competence. We found that although influenza-specific T cell responses are compromised in the aged mice, vaccination with influenza early (but not late) in life ‘locks’ optimal T-cell responsiveness, maintains functional quality, persistence of preferred clones and a characteristic T cell hierarchy. Overall, our study supports development of vaccines that prime T cells early in life to elicit the broadest possible spectrum of pre-existing T cell memory and preserve the magnitude, functionality and clonal usage of responding populations for life-long immunity against influenza viruses.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells.

          Establishing a CD8(+) T cell-mediated immune correlate of protection in HIV disease is crucial to the development of vaccines designed to generate cell-mediated immunity. Historically, neither the quantity nor breadth of the HIV-specific CD8(+) T-cell response has correlated conclusively with protection. Here, we assess the quality of the HIV-specific CD8(+) T-cell response by measuring 5 CD8(+) T-cell functions (degranulation, IFN-gamma, MIP-1beta, TNF-alpha, and IL-2) simultaneously in chronically HIV-infected individuals and elite nonprogressors. We find that the functional profile of HIV-specific CD8(+) T cells in progressors is limited compared to that of nonprogressors, who consistently maintain highly functional CD8(+) T cells. This limited functionality is independent of HLA type and T-cell memory phenotype, is HIV-specific rather than generalized, and is not effectively restored by therapeutic intervention. Whereas the total HIV-specific CD8(+) T-cell frequency did not correlate with viral load, the frequency and proportion of the HIV-specific T-cell response with highest functionality inversely correlated with viral load in the progressors. Thus, rather than quantity or phenotype, the quality of the CD8(+) T-cell functional response serves as an immune correlate of HIV disease progression and a potential qualifying factor for evaluation of HIV vaccine efficacy.
            • Record: found
            • Abstract: found
            • Article: not found

            Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major.

            CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses after immunization, we show that the degree of protection against Leishmania major infection in mice is predicted by the frequency of CD4+ T cells simultaneously producing interferon-gamma, interleukin-2 and tumor necrosis factor. Notably, multifunctional effector cells generated by all vaccines tested are unique in their capacity to produce high amounts of interferon-gamma. These data show that the quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.
              • Record: found
              • Abstract: found
              • Article: not found

              Cytotoxic T-cell immunity to influenza.

              In a study designed to determine whether cytotoxic T lymphocytes contribute to immunity against influenza virus infection, we inoculated 63 volunteers intranasally with live unattenuated influenza A/Munich/1/79 virus. Over the next seven days clinical observations were made, and the amount of virus shed was measured. The protective effects of preinfection serum antibody and of cytotoxic T-cell immunity against influenza A virus were assessed for each participant. All subjects with demonstrable T-cell responses cleared virus effectively. This response was observed in volunteers in all age groups, including those born after 1956, who did not have specific antibody and hence had probably not been exposed to this subtype of influenza A virus before. Cytotoxic T cells show cross-reactivity in their recognition of the different subtypes of influenza A virus, in contrast to the antibody response that is specific for each virus subtype. We conclude that cytotoxic T cells play a part in recovery from influenza virus infection.

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2012
                February 2012
                23 February 2012
                : 8
                : 2
                : e1002544
                Affiliations
                [1 ]Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, Australia
                [2 ]Computational Biology Group St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
                [3 ]Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
                [4 ]Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, Australia
                University of Pennsylvania, United States of America
                Author notes

                Conceived and designed the experiments: KK SAV MPD VV PCD. Performed the experiments: SAV NLB. Analyzed the data: SAV KK VV THYD NLB. Wrote the paper: SAV KK VV THYD NLB MPD SJT PCD.

                Article
                PPATHOGENS-D-11-01746
                10.1371/journal.ppat.1002544
                3285595
                22383879
                bcfda4f6-7c60-4a86-8d72-f8476e2363e5
                Valkenburg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 August 2011
                : 7 January 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Medicine
                Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article

                Related Documents Log