4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SARS-CoV-2 Variants in Paraguay: Detection and Surveillance with an Economical and Scalable Molecular Protocol

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SARS-CoV-2 variant detection relies on resource-intensive whole-genome sequencing methods. We sought to develop a scalable protocol for variant detection and surveillance in Paraguay, pairing rRT-PCR for spike mutations with Nanopore sequencing. A total of 201 acute-phase nasopharyngeal samples were included. Samples were positive for the SARS-CoV-2 N2 target and tested with the Spike SNP assay to detect mutations associated with the following variants: alpha (501Y), beta/gamma (417variant/484K/501Y), delta (452R/478K), and lambda (452Q/490S). Spike SNP calls were confirmed using amplicon (Sanger) sequencing and whole-genome (Nanopore) sequencing on a subset of samples with confirmed variant lineages. Samples had a mean N2 Ct of 20.8 (SD 5.6); 198/201 samples (98.5%) tested positive in the Spike SNP assay. The most common genotype was 417variant/484K/501Y, detected in 102/198 samples (51.5%), which was consistent with the P.1 lineage (gamma variant) in Paraguay. No mutations (K417 only) were found in 64/198 (32.3%), and K417/484K was identified in 22/198 (11.1%), consistent with P.2 (zeta). Seven samples (3.5%) tested positive for 452R without 478K, and one sample with genotype K417/501Y was confirmed as B.1.1.7 (alpha). The results were confirmed using Sanger sequencing in 181/181 samples, and variant calls were consistent with Nanopore sequencing in 29/29 samples. The Spike SNP assay could improve population-level surveillance for mutations associated with SARS-CoV-2 variants and inform the judicious use of sequencing resources.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

          Background The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur. Aim We aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available. Methods Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology. Results The workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive – Global (EVAg), a European Union infrastructure project. Conclusion The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nextstrain: real-time tracking of pathogen evolution

            Abstract Summary Understanding the spread and evolution of pathogens is important for effective public health measures and surveillance. Nextstrain consists of a database of viral genomes, a bioinformatics pipeline for phylodynamics analysis, and an interactive visualization platform. Together these present a real-time view into the evolution and spread of a range of viral pathogens of high public health importance. The visualization integrates sequence data with other data types such as geographic information, serology, or host species. Nextstrain compiles our current understanding into a single accessible location, open to health professionals, epidemiologists, virologists and the public alike. Availability and implementation All code (predominantly JavaScript and Python) is freely available from github.com/nextstrain and the web-application is available at nextstrain.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology

              The ongoing pandemic spread of a novel human coronavirus, SARS-COV-2, associated with severe pneumonia disease (COVID-19), has resulted in the generation of tens of thousands of virus genome sequences. The rate of genome generation is unprecedented, yet there is currently no coherent nor accepted scheme for naming the expanding phylogenetic diversity of SARS-CoV-2. We present a rational and dynamic virus nomenclature that uses a phylogenetic framework to identify those lineages that contribute most to active spread. Our system is made tractable by constraining the number and depth of hierarchical lineage labels and by flagging and de-labelling virus lineages that become unobserved and hence are likely inactive. By focusing on active virus lineages and those spreading to new locations this nomenclature will assist in tracking and understanding the patterns and determinants of the global spread of SARS-CoV-2.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                VIRUBR
                Viruses
                Viruses
                MDPI AG
                1999-4915
                May 2022
                April 22 2022
                : 14
                : 5
                : 873
                Article
                10.3390/v14050873
                35632615
                bd090e08-09e3-4b90-87f4-69e91d3977bc
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article