42
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Magnesium and osteoporosis

      ,
      Trace Elements and Electrolytes
      Dustri-Verlgag Dr. Karl Feistle
      osteoporosis, Mg deficiency, Mg metabolism, Mg-based biomaterials, Mg supplementation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Metabolic alterations induced by Mg deficiency, beneficial effects of Mg-based biomaterials and clinical data strongly suggest that Mg metabolism plays a crucial role in the pathogenesis of osteoporosis. Plentiful Mg supply is recommended for prophylaxis and therapy of osteoporosis.


          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Selenium, selenoproteins and human health: a review.

          Selenium is of fundamental importance to human health. It is an essential component of several major metabolic pathways, including thyroid hormone metabolism, antioxidant defence systems, and immune function. The decline in blood selenium concentration in the UK and other European Union countries has therefore several potential public health implications, particularly in relation to the chronic disease prevalence of the Western world such as cancer and cardiovascular disease. Ten years have elapsed since recommended dietary intakes of selenium were introduced on the basis of blood glutathione peroxidase activity. Since then 30 new selenoproteins have been identified, of which 15 have been purified to allow characterisation of their biological function. The long term health implications in relation to declining selenium intakes have not yet been thoroughly examined, yet the implicit importance of selenium to human health is recognised universally. Selenium is incorporated as selenocysteine at the active site of a wide range of selenoproteins. The four glutathione peroxidase enzymes (classical GPx1, gastrointestinal GPx2, plasma GPx3, phospholipid hydroperoxide GPx4)) which represent a major class of functionally important selenoproteins, were the first to be characterised. Thioredoxin reductase (TR) is a recently identified seleno-cysteine containing enzyme which catalyzes the NADPH dependent reduction of thioredoxin and therefore plays a regulatory role in its metabolic activity. Approximately 60% of Se in plasma is incorporated in selenoprotein P which contains 10 Se atoms per molecule as selenocysteine, and may serve as a transport protein for Se. However, selenoprotein-P is also expressed in many tissues which suggests that although it may facilitate whole body Se distribution, this may not be its sole function. A second major class of selenoproteins are the iodothyronine deiodinase enzymes which catalyse the 5'5-mono-deiodination of the prohormone thyroxine (T4) to the active thyroid hormone 3,3'5-triiodothyronine (T3). Sperm capsule selenoprotein is localised in the mid-peice portion of spermatozoa where it stabilises the integrity of the sperm flagella. Se intake effects tissue concentrations of selenoprotein W which is reported to be necessary for muscle metabolism. It is of great concern that the health implications of the decline in Se status in the UK over the past two decades have not been systematically investigated. It is well recognised that dietary selenium is important for a healthy immune response. There is also evidence that Se has a protective effect against some forms of cancer; that it may enhance male fertility; decrease cardiovascular disease mortality, and regulate the inflammatory mediators in asthma. The potential influence of Se on these chronic diseases within the European population are important considerations when assessing Se requirement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Zinc, copper, and blood pressure: Human population studies

            Summary Copper and zinc are essential trace biometals that regulate cardiovascular homeostasis, and dysregulation of these metals has been linked to vascular diseases, including hypertension. In this article, we review recent human population studies concerning this topic, focusing on: 1) the relationship between blood pressure and levels of zinc and copper; 2) correlations between trace metals, the renin-angiotensin system, obesity, and hypertension; 3) the relationship between environmental metal pollution and the development of hypertension; and 4) methods commonly employed to assay zinc and copper in human specimens. Moreover, based on the findings of these studies, we suggest the following topics as the basis for future investigations: 1) the potential role of environmental metal pollution as a causal factor for hypertension; 2) metal profiles within specific pathogenic subsets of patients with hypertension; 3) standardizing the experimental design so that the results between different studies are more comparable; and 4) the requirement for animal experiments as complementary approaches to address mechanistic insight that cannot be studied in human populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The value of the chloride: sodium ratio in differentiating the aetiology of metabolic acidosis.

              Stewart's physicochemical approach to acid-base balance defines the aetiology of a metabolic acidosis by quantifying anions of tissue acids (TA), which consist of unmeasured anions (UMA) and/or lactate. We hypothesised that an increase in TA during metabolic acidosis would lead to a compensatory fall in the plasma chloride (Cl) relative to sodium (Cl:Na ratio) in order to preserve electro-neutrality. Thus, the Cl:Na ratio could be used as a simple alternative to the anion gap in identifying raised TA. Two hundred and eighty two consecutive patients who were admitted to our Paediatric Intensive Care were enrolled in the study. We obtained 540 samples (admission n = 282, 24 h n = 258) for analysis of blood chemistry, lactate and quantification of TA and UMA. Samples were subgrouped into those with metabolic acidosis (standard bicarbonate 3 mEq/l). Metabolic acidosis occurred in 46% of samples, of which 52.3% (120/230) had increased UMA. The dominant component of TA was UMA rather than lactate, and these two components did not always rise in tandem. Our hypothesis of relative hypochloraemia was supported by a lower Cl:Na ratio (P 0.79) excluded TA (PPV 81%, LR 4.5). Base deficit (BD) and lactate performed poorly. In metabolic acidosis due to TA, plasma Cl concentration decreases relative to sodium. The Cl:Na ratio is a simple alternative to the AG for detecting TA in this setting.
                Bookmark

                Author and article information

                Journal
                Trace Elements and Electrolytes
                TE
                Dustri-Verlgag Dr. Karl Feistle
                0946-2104
                2017
                July 01 2017
                : 34
                : 07
                : 100-103
                Article
                10.5414/TEX01482
                bd0b525f-8824-449f-91ed-537572b48e33
                © 2017
                History

                Endocrinology & Diabetes,General medicine,Medicine,Gastroenterology & Hepatology,Nutrition & Dietetics
                Mg metabolism,Mg supplementation,osteoporosis,Mg-based biomaterials,Mg deficiency

                Comments

                Comment on this article