28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation.

      Biochemistry
      cis-trans-Isomerases, Molecular Structure, Animals, antagonists & inhibitors, Carrier Proteins, metabolism, Lipofuscin, Mice, drug effects, Mice, Inbred BALB C, Structure-Activity Relationship, Mice, Knockout, Rats, Rats, Sprague-Dawley, Cattle, Eye Proteins, Amides, Ketones, physiology, Vision, Ocular, Isotretinoin, Gene Expression Regulation, biosynthesis, Male

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The accumulation of the lipofuscin fluorophores in retinal pigment epithelial (RPE) cells leads to the blinding degeneration characteristic of Stargardt disease and related forms of macular degeneration. RPE lipofuscin, including the fluorophore A2E, forms in large part as a byproduct of the visual cycle. Inhibiting visual cycle function with small molecules is required to prevent the formation of the retinotoxic lipofuscins. This in turn requires identification of rate-limiting steps in the operation of the visual cycle. Specific, non-retinoid isoprenoid compounds are described here, and shown through in both in vitro and in vivo experiments, to serve as antagonists of RPE65, a protein that is essential for the operation of the visual cycle. These RPE65 antagonists block regeneration of 11-cis-retinal, the chromophore of rhodopsin, thereby demonstrating that RPE65 is at least partly rate-limiting in the visual cycle. Furthermore, chronic treatment of a mouse model of Stargardt disease with the RPE65 antagonists abolishes the formation of A2E. Thus, RPE65 is also on the rate-limiting pathway to A2E formation. These nontoxic isoprenoid RPE65 antagonists are candidates for the treatment of forms of macular degeneration wherein lipofuscin accumulation is an important risk factor. These antagonists will also be used to probe the molecular function of RPE65 in vision.

          Related collections

          Author and article information

          Comments

          Comment on this article