10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GSPE Inhibits HMGB1 Release, Attenuating Renal IR-Induced Acute Renal Injury and Chronic Renal Fibrosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Grape seed proanthocyanindin extract (GSPE) is a polyphenolic bioflavonoid derived from grape seeds and has been widely studied for its potent antioxidant, anti-inflammatory and antitumor activities. HMGB1 is a newly discovered danger-associated molecular pattern (DAMP) that has potent proinflammatory effects once released by necrotic cells. However, the effect of GSPE on the HMGB1, and the relationship of those two with acute kidney injury and chronic kidney fibrosis are unknown. This study aimed to investigate the impact of GSPE on acute kidney injury and chronic fibrosis. C57bl/6 mice were subjected to bilateral ischemia/reperfusion (I/R) and unilateral I/R with or without GSPE administration. After bilateral I/R, mice administered GSPE had a marked improvement in renal function (BUN and Cr), decreased pathological damage and reduced inflammation. In unilateral I/R, mice subjected GSPE showed reduced tubulointerstitial fibrosis and decreased inflammatory reaction. The renoprotection of GSPE on both models was associated with the inhibition of HMGB1 nucleocytoplasmic shuttling and release, which can amplify the inflammation through binding to its downstream receptor TLR4 and facilitated P65 transcription. Thus, we have reason to believe that GSPE could be a good alternative therapy for the prevention and treatment of IR-induced renal injury and fibrosis in clinical practice.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          HMG-1 as a late mediator of endotoxin lethality in mice.

          Endotoxin, a constituent of Gram-negative bacteria, stimulates macrophages to release large quantities of tumor necrosis factor (TNF) and interleukin-1 (IL-1), which can precipitate tissue injury and lethal shock (endotoxemia). Antagonists of TNF and IL-1 have shown limited efficacy in clinical trials, possibly because these cytokines are early mediators in pathogenesis. Here a potential late mediator of lethality is identified and characterized in a mouse model. High mobility group-1 (HMG-1) protein was found to be released by cultured macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. Mice showed increased serum levels of HMG-1 from 8 to 32 hours after endotoxin exposure. Delayed administration of antibodies to HMG-1 attenuated endotoxin lethality in mice, and administration of HMG-1 itself was lethal. Septic patients who succumbed to infection had increased serum HMG-1 levels, suggesting that this protein warrants investigation as a therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of tubulointerstitial fibrosis.

            The pathologic paradigm for renal progression is advancing tubulointerstitial fibrosis. Whereas mechanisms underlying fibrogenesis have grown in scope and understanding in recent decades, effective human treatment to directly halt or even reverse fibrosis remains elusive. Here, we examine key features mediating the molecular and cellular basis of tubulointerstitial fibrosis and highlight new insights that may lead to novel therapies. How to prevent chronic kidney disease from progressing to renal failure awaits even deeper biochemical understanding.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute kidney injury and chronic kidney disease: an integrated clinical syndrome.

              The previous conventional wisdom that survivors of acute kidney injury (AKI) tend to do well and fully recover renal function appears to be flawed. AKI can cause end-stage renal disease (ESRD) directly, and increase the risk of developing incident chronic kidney disease (CKD) and worsening of underlying CKD. In addition, severity, duration, and frequency of AKI appear to be important predictors of poor patient outcomes. CKD is an important risk factor for the development and ascertainment of AKI. Experimental data support the clinical observations and the bidirectional nature of the relationships between AKI and CKD. Reductions in renal mass and nephron number, vascular insufficiency, cell cycle disruption, and maladaptive repair mechanisms appear to be important modulators of progression in patients with and without coexistent CKD. Distinction between AKI and CKD may be artificial. Consideration should be given to the integrated clinical syndrome of diminished GFR, with acute and chronic stages, where spectrum of disease state and outcome is determined by host factors, including the balance of adaptive and maladaptive repair mechanisms over time. Physicians must provide long-term follow-up to patients with first episodes of AKI, even if they presented with normal renal function.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                29 September 2016
                October 2016
                : 17
                : 10
                : 1647
                Affiliations
                Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China; zhan021989juan@ 123456foxmail.com (J.Z.); wangkun901109@ 123456163.com (K.W.); yaoyaoyouxin@ 123456outlook.com (Co.Z.); zhangchunxiu03@ 123456163.com (Ch.Z.); wuanliyue@ 123456126.com (Yu.L.); zhangying19880914@ 123456163.com (Y.Z.); yanloveiy666@ 123456163.com (X.C.); qiaodanzhou_1000@ 123456163.com (Q.Z.); yaoyingkk@ 123456126.com (Y.Y.)
                Author notes
                [* ]Correspondence: liuyy1919@ 123456163.com (Ya.L.); xugang@ 123456tjh.tjmu.edu.cn (G.X.); Tel.: +86-27-8366-3218 (Ya.L.); +86-27-8366-3613 (G.X.)
                Article
                ijms-17-01647
                10.3390/ijms17101647
                5085680
                27690015
                bd19bf20-684f-464c-a2a0-0c868c510e66
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 August 2016
                : 19 September 2016
                Categories
                Article

                Molecular biology
                gspe,acute kidney injury,chronic kidney fibrosis,hmgb1
                Molecular biology
                gspe, acute kidney injury, chronic kidney fibrosis, hmgb1

                Comments

                Comment on this article