Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      THE SIMULATION ANALYSIS OF A PROPOSED ‘HYDRONIC RADIATOR’ SYSTEM TOWARDS LOW COST HOUSING OPERATION IN TEMPERATE AND HOT TROPICAL CLIMATES

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fuel poverty is one of the global concerns affecting not only users' financial capacity or affordability for maintaining housing operation but also the occupants' health and wellbeing. Space heating and cooling require a relatively large amount of domestic energy use in housing. Therefore, this study was formed with the aim to propose an innovative approach to utilising free, clean renewable sources of energy applicable to the space heating and cooling of housing in both cold and hot regions. Accordingly, housing test facilities based in Melbourne, Australia, and Kuching, Malaysia, were selected and used for this study that examined the thermal performance of a proposed ‘hydronic radiator’ (HR) system through simulation and onsite measurements. The geothermal heat capacity of a ‘vertical ground heat exchanger’ (VGHE) installed in the house in Melbourne was examined previously by the authors and the VGHE measured data was also applied to this HR performance simulation. The water that circulates through the HRs is heated by sunlight and VGHE or cooled by night sky radiation. This study drew conclusions that the sole utilisation of renewable sources through these proposed HR space heating and cooling systems can provide thermally accessible or comfortable indoor living environments in both heating or cooling dominant regions. Thus, fuel poverty issues may be alleviated through HR system application. The HRs can remove a ‘sensible’ portion of metabolic heat, but they cannot effectively contribute to the ‘latent’ heat removal. Thus, the future potential use or effect of ‘flow-through’ HRs, which are integrated into a underfloor air distribution (UFAD) plenum, was also dsicussed in this study. In the test house located in Melbourne, the flow-through HR UFAD system is currently under development. Therefore, the performance will be measured once the system has come into operation for further testing.

          Related collections

          Most cited references 7

          • Record: found
          • Abstract: not found
          • Article: not found

          Using Radiant Cooling Desk for Maintaining Comfort in Hot Environment

           Y HE,  N Li,  M He (2017)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Short Time Step Response Factor Model for Vertical Ground Loop Heat Exchangers

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The rise of fuel poverty as an Australian issue: Customers—Understanding their Needs, Wants and Expectations

               J Benvenuti (2012)
                Bookmark

                Author and article information

                Journal
                jgrb
                Journal of Green Building
                College Publishing
                1552-6100
                1943-4618
                1943-4618
                Winter 2020
                : 15
                : 1
                : 73-86
                Author notes

                1. ZEMCH Lab, Faculty of Architecture, Building and Planning, The University of Melbourne, Melbourne, Australia, masa.noguchi@ 123456unimelb.edu.au

                2. ZEMCH Lab, Faculty of Architecture, Building and Planning, The University of Melbourne, Melbourne, Australia, ooi_kb3@ 123456hotmail.com

                Article
                jgb.15.1.73
                10.3992/1943-4618.15.1.73
                ©2020 by College Publishing. All rights reserved.
                Page count
                Pages: 14
                Product
                Categories
                RESEARCH ARTICLES

                Comments

                Comment on this article