13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deconstructing networks of p53-mediated tumor suppression in vivo.

      Cell Death and Differentiation
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transcription factor p53 is a vital tumor suppressor. Upon activation by diverse stresses including oncogene activation, DNA damage, hypoxia and nutrient deprivation, p53 activates a panoply of target genes and orchestrates numerous downstream responses that suppress tumorigenesis. Although early studies of p53 suggested that its ability to induce cell cycle arrest, senescence and apoptosis programs accounted for its tumor-suppressor activity, more recent studies have challenged this notion. Moreover, p53 regulates a suite of additional processes, such as metabolism, stem cell function, invasion and metastasis. The processes p53 coordinately regulates to enact tumor suppression, and how such regulation occurs, thus remain elusive. In this review, we will summarize our current knowledge of p53-mediated tumor-suppressive mechanisms gleaned from in vivo studies in mouse models.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.

          Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cancer. p53, guardian of the genome.

            D P Lane (1992)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours.

              Mutations in the p53 tumour-suppressor gene are the most frequently observed genetic lesions in human cancers. To investigate the role of the p53 gene in mammalian development and tumorigenesis, a null mutation was introduced into the gene by homologous recombination in murine embryonic stem cells. Mice homozygous for the null allele appear normal but are prone to the spontaneous development of a variety of neoplasms by 6 months of age. These observations indicate that a normal p53 gene is dispensable for embryonic development, that its absence predisposes the animal to neoplastic disease, and that an oncogenic mutant form of p53 is not obligatory for the genesis of many types of tumours.
                Bookmark

                Author and article information

                Journal
                29099489
                5729531
                10.1038/cdd.2017.171

                Comments

                Comment on this article