41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies of ETS-mediated prostate oncogenesis have been hampered by the lack of suitable experimental systems. Here we describe a new conditional mouse model which gives robust, homogenous ERG expression throughout the prostate. When combined with homozygous Pten loss, mice developed accelerated, highly penetrant invasive prostate cancer. In mouse prostate tissue, ERG significantly increased androgen receptor (AR) binding. Robust ERG-mediated transcriptional changes, observed only in the setting of Pten loss, included restoration of AR transcriptional outut and genes involved in cell death, migration, inflammation and angiogenesis. Similarly, ETV1 positively regulated AR cistrome and transcriptional output in ETV1-translocated, PTEN-deficient human prostate cancer cells. In two large clinical cohorts, ERG and ETV1 expression correlated with higher AR transcriptional output in PTEN-negative prostate cancer specimens. We propose that ETS factors cause prostate-specific transformation by altering the AR cistrome, priming the prostate epithelium to respond to aberrant upstream signals such as PTEN loss.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study.

          MDV3100 is an androgen-receptor antagonist that blocks androgens from binding to the androgen receptor and prevents nuclear translocation and co-activator recruitment of the ligand-receptor complex. It also induces tumour cell apoptosis, and has no agonist activity. Because growth of castration-resistant prostate cancer is dependent on continued androgen-receptor signalling, we assessed the antitumour activity and safety of MDV3100 in men with this disease. This phase 1-2 study was undertaken in five US centres in 140 patients. Patients with progressive, metastatic, castration-resistant prostate cancer were enrolled in dose-escalation cohorts of three to six patients and given an oral daily starting dose of MDV3100 30 mg. The final daily doses studied were 30 mg (n=3), 60 mg (27), 150 mg (28), 240 mg (29), 360 mg (28), 480 mg (22), and 600 mg (3). The primary objective was to identify the safety and tolerability profile of MDV3100 and to establish the maximum tolerated dose. The trial is registered with ClinicalTrials.gov, number NCT00510718. We noted antitumour effects at all doses, including decreases in serum prostate-specific antigen of 50% or more in 78 (56%) patients, responses in soft tissue in 13 (22%) of 59 patients, stabilised bone disease in 61 (56%) of 109 patients, and conversion from unfavourable to favourable circulating tumour cell counts in 25 (49%) of the 51 patients. PET imaging of 22 patients to assess androgen-receptor blockade showed decreased (18)F-fluoro-5alpha-dihydrotestosterone binding at doses from 60 mg to 480 mg per day (range 20-100%). The median time to progression was 47 weeks (95% CI 34-not reached) for radiological progression. The maximum tolerated dose for sustained treatment (>28 days) was 240 mg. The most common grade 3-4 adverse event was dose-dependent fatigue (16 [11%] patients), which generally resolved after dose reduction. We recorded encouraging antitumour activity with MDV3100 in patients with castration-resistant prostate cancer. The results of this phase 1-2 trial validate in man preclinical studies implicating sustained androgen-receptor signalling as a driver in this disease. Medivation, the Prostate Cancer Foundation, National Cancer Institute, the Howard Hughes Medical Institute, Doris Duke Charitable Foundation, and Department of Defense Prostate Cancer Clinical Trials Consortium. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Notch signaling controls multiple steps of pancreatic differentiation.

            Multiple cell types of the pancreas appear asynchronously during embryogenesis, which requires that pancreatic progenitor cell potential changes over time. Loss-of-function studies have shown that Notch signaling modulates the differentiation of these progenitors, but it remains unclear how and when the Notch pathway acts. We established a modular transgenic system to heritably activate mouse Notch1 in multiple types of progenitors and differentiated cells. We find that misexpression of activated Notch in Pdx1-expressing progenitor cells prevents differentiation of both exocrine and endocrine lineages. Progenitors remain trapped in an undifferentiated state even if Notch activation occurs long after the pancreas has been specified. Furthermore, endocrine differentiation is associated with escape from this activity, because Ngn3-expressing endocrine precursors are susceptible to Notch inhibition, whereas fully differentiated endocrine cells are resistant.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the TMPRSS2-ERG gene fusion in prostate cancer.

              TMPRSS2-ERG gene fusions are the predominant molecular subtype of prostate cancer. Here, we explored the role of TMPRSS2-ERG gene fusion product using in vitro and in vivo model systems. Transgenic mice expressing the ERG gene fusion product under androgen-regulation develop mouse prostatic intraepithelial neoplasia (PIN), a precursor lesion of prostate cancer. Introduction of the ERG gene fusion product into primary or immortalized benign prostate epithelial cells induced an invasion-associated transcriptional program but did not increase cellular proliferation or anchorage-independent growth. These results suggest that TMPRSS2-ERG may not be sufficient for transformation in the absence of secondary molecular lesions. Transcriptional profiling of ERG knockdown in the TMPPRSS2-ERG-positive prostate cancer cell line VCaP revealed decreased expression of genes over-expressed in prostate cancer versus PIN and genes overexpressed in ETS-positive versus -negative prostate cancers in addition to inhibiting invasion. ERG knockdown in VCaP cells also induced a transcriptional program consistent with prostate differentiation. Importantly, VCaP cells and benign prostate cells overexpressing ERG directly engage components of the plasminogen activation pathway to mediate cellular invasion, potentially representing a downstream ETS target susceptible to therapeutic intervention. Our results support previous work suggesting that TMPRSS2-ERG fusions mediate invasion, consistent with the defining histologic distinction between PIN and prostate cancer.
                Bookmark

                Author and article information

                Journal
                9502015
                8791
                Nat Med
                Nat. Med.
                Nature medicine
                1078-8956
                1546-170X
                17 June 2013
                30 June 2013
                August 2013
                01 February 2014
                : 19
                : 8
                : 1023-1029
                Affiliations
                [1 ]Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
                [2 ]Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
                [3 ]Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
                [4 ]Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
                [5 ]Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
                Author notes
                [6]

                These authors contributed equally

                Article
                NIHMS474659
                10.1038/nm.3216
                3737318
                23817021
                bd2ba3f3-c760-480f-9b72-15ee50275d29

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Cancer Institute : NCI
                Award ID: U01 CA141502 || CA
                Funded by: National Institute of Mental Health : NIMH
                Award ID: R21 MH099452 || MH
                Funded by: National Cancer Institute : NCI
                Award ID: P50 CA092629 || CA
                Funded by: National Cancer Institute : NCI
                Award ID: K08 CA151660 || CA
                Funded by: National Cancer Institute : NCI
                Award ID: K08 CA140946 || CA
                Funded by: Howard Hughes Medical Institute :
                Award ID: || HHMI_
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article