3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Drug interaction of efavirenz and midazolam: efavirenz activates the CYP3A-mediated midazolam 1'-hydroxylation in vitro.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CYP3A4 and CYP3A5 are the most important drug-metabolizing enzymes. For several drugs, heteroactivation of CYP3A-mediated reactions has been demonstrated in vitro. In vivo data suggested a possible acute activation of CYP3A4-catalyzed midazolam metabolism by efavirenz. Therefore, we aimed to investigate the effect of efavirenz on the in vitro metabolism of midazolam. The formation of 1'-hydroxymidazolam was studied in pooled human liver microsomes (HLM) and recombinant human CYP3A4 and CYP3A5 (rCYP3A4 and rCYP3A5) in the presence of efavirenz (0.5, 1, and 5 μM). Product formation rates (V(max)) increased with increasing efavirenz concentrations (∼1.5-fold increase at 5 μM efavirenz in HLM and ∼1.4-fold in rCYP3A4). The activation in rCYP3A4 was dependent on cytochrome b5, and the activating effect was also observed in rCYP3A5 supplemented with cytochrome b5, where Vmax was ∼1.3-fold enhanced. Concomitant inhibition of CYP3A activity with ketoconazole in HLM abolished the increase in the 1'-hydroxymidazolam formation rate, further confirming involvement of CYP3A. The results of this study represent a distinct acute activation of midazolam metabolism and support the in vivo observations. Moreover, only efavirenz, but not its major metabolite 8-hydroxyefavirenz, was responsible for the activation. The increase in 1'-hydroxymidazolam formation may have been caused by binding of efavirenz to a peripheral site of the enzyme, leading to enhanced midazolam turnover due to changes at the active site.

          Related collections

          Author and article information

          Journal
          Drug Metab. Dispos.
          Drug metabolism and disposition: the biological fate of chemicals
          American Society for Pharmacology & Experimental Therapeutics (ASPET)
          1521-009X
          0090-9556
          Jun 2012
          : 40
          : 6
          Affiliations
          [1 ] Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany.
          Article
          dmd.111.043844
          10.1124/dmd.111.043844
          22415932
          bd2bc15d-5146-4446-ba9b-4c3415ea6d3e
          History

          Comments

          Comment on this article