84
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The impact of crystalloidal and colloidal infusion preparations on coronary vascular integrity, interstitial oedema and cardiac performance in isolated hearts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Recent data suggested an interaction between plasma constituents and the endothelial glycocalyx to be relevant for vascular barrier function. This might be negatively influenced by infusion solutions, depending on ionic composition, pH and binding properties. The present study evaluated such an influence of current artificial preparations.

          Methods

          Isolated guinea pig hearts were prepared in a modified Langendorff mode and perfused with Krebs-Henseleit buffer augmented with 1g% human albumin. After equilibration the perfusion was switched to replacement of one half buffer by either isotonic saline (NaCl), ringer's acetate (Ri-Ac), 6% and 10% hydroxyethyl starch (6% and 10% HES, resp.), or 4% gelatine (Gel), the artificial colloids having been prepared in balanced solution. We analysed glycocalyx shedding, functional integrity of the vascular barrier and heart performance.

          Results

          While glycocalyx shedding was not observed, diluting albumin concentration towards 0.5g% by artificial solutions was associated with a marked functional breakdown of vascular barrier competence. This effect was biggest with isotonic saline and significantly attenuated with artificial colloids, the difference in the pressure dependent transvascular fluid filtration (basal vs. during infusion in groups NaCl, Ri-Ac, 6% HES, 10% HES and Gel, n = 6 each) being 0.31 ± 0.03 vs. 1.00 ± 0.04; 0.27 ± 0.03 vs. 0.81 ± 0.03; 0.29 ± 0.03 vs. 0.68 ± 0.02; 0.32 ± 0.03 vs. 0.59 ± 0.08 and 0.31 ± 0.04 vs. 0.61 ± 0.03 g/5min, respectively. Heart performance was directly related to pH value (7.38 ± 0.06, 7.33 ± 0.03, 7.14 ± 0.04, 7.08 ± 0.04, 7.25 ± 0.03), the change in the rate pressure product being 21,702 ± 1969 vs. 21,291 ± 2,552; 22,098 ± 2,115 vs. 14,114 ± 3,386; 20,897 ± 2,083 vs. 10,671 ± 1,948; 21,822 ± 2,470 vs. 10,047 ± 2,320 and 20,955 ± 2,296 vs. 15,951 ± 2,755 mmHg × bpm, respectively.

          Conclusions

          It appears important to maintain the pH value within a physiological range to maintain optimal myocardial contractility. Using colloids prepared in calcium-containing, balanced solutions for volume replacement therapy may attenuate the breakdown of vascular barrier competence in the critically ill.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          The structure and function of the endothelial glycocalyx layer.

          Over the past decade, since it was first observed in vivo, there has been an explosion in interest in the thin (approximately 500 nm), gel-like endothelial glycocalyx layer (EGL) that coats the luminal surface of blood vessels. In this review, we examine the mechanical and biochemical properties of the EGL and the latest studies on the interactions of this layer with red and white blood cells. This includes its deformation owing to fluid shear stress, its penetration by leukocyte microvilli, and its restorative response after the passage of a white cell in a tightly fitting capillary. We also examine recently discovered functions of the EGL in modulating the oncotic forces that regulate the exchange of water in microvessels and the role of the EGL in transducing fluid shear stress into the intracellular cytoskeleton of endothelial cells, in the initiation of intracellular signaling, and in the inflammatory response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte.

            To assess the association of 0.9% saline use versus a calcium-free physiologically balanced crystalloid solution with major morbidity and clinical resource use after abdominal surgery. 0.9% saline, which results in a hyperchloremic acidosis after infusion, is frequently used to replace volume losses after major surgery. An observational study using the Premier Perspective Comparative Database was performed to evaluate adult patients undergoing major open abdominal surgery who received either 0.9% saline (30,994 patients) or a balanced crystalloid solution (926 patients) on the day of surgery. The primary outcome was major morbidity and secondary outcomes included minor complications and acidosis-related interventions. Outcomes were evaluated using multivariable logistic regression and propensity scoring models. For the entire cohort, the in-hospital mortality was 5.6% in the saline group and 2.9% in the balanced group (P < 0.001). One or more major complications occurred in 33.7% of the saline group and 23% of the balanced group (P < 0.001). In the 3:1 propensity-matched sample, treatment with balanced fluid was associated with fewer complications (odds ratio 0.79; 95% confidence interval 0.66-0.97). Postoperative infection (P = 0.006), renal failure requiring dialysis (P < 0.001), blood transfusion (P < 0.001), electrolyte disturbance (P = 0.046), acidosis investigation (P < 0.001), and intervention (P = 0.02) were all more frequent in patients receiving 0.9% saline. Among hospitals in the Premier Perspective Database, the use of a calcium-free balanced crystalloid for replacement of fluid losses on the day of major surgery was associated with less postoperative morbidity than 0.9% saline.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential.

              Damage of the endothelial glycocalyx, which ranges from 200 to 2000 nm in thickness, decreases vascular barrier function and leads to protein extravasation and tissue oedema, loss of nutritional blood flow, and an increase in platelet and leucocyte adhesion. Thus, its protection or the restoration of an already damaged glycocalyx seems to be a promising therapeutic target both in an acute critical care setting and in the treatment of chronic vascular disease. Drugs that can specifically increase the synthesis of glycocalyx components, refurbish it, or selectively prevent its enzymatic degradation do not seem to be available. Pharmacological blockers of radical production may be useful to diminish the oxygen radical stress on the glycocalyx. Tenable options are the application of hydrocortisone (inhibiting mast-cell degranulation), use of antithrombin III (lowering susceptibility to enzymatic attack), direct inhibition of the cytokine tumour necrosis factor-alpha, and avoidance of the liberation of natriuretic peptides (as in volume loading and heart surgery). Infusion of human plasma albumin (to maintain mechanical and chemical stability of the endothelial surface layer) seems the easiest treatment to implement.
                Bookmark

                Author and article information

                Contributors
                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2013
                14 September 2013
                : 17
                : 5
                : R203
                Affiliations
                [1 ]Department of Anaesthesiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
                [2 ]Department of Anaesthesiology, University Hospital Munich, Nussbaumstr. 20, 80336 Munich, Germany
                [3 ]Walter-Brendel-Center of Experimental Medicine, University of Munich, Schillerstr. 44, 80336 Munich, Germany
                Article
                cc12898
                10.1186/cc12898
                4057311
                24034366
                bd3a3d62-de0a-417e-8900-eae3c14215f4
                Copyright © 2013 Zausig et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 January 2013
                : 29 May 2013
                : 14 September 2013
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article