47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tapered gold-helix metamaterials as improved circular polarizers

      , , , , ,
      Applied Physics Letters
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Gold helix photonic metamaterial as broadband circular polarizer.

          We investigated propagation of light through a uniaxial photonic metamaterial composed of three-dimensional gold helices arranged on a two-dimensional square lattice. These nanostructures are fabricated via an approach based on direct laser writing into a positive-tone photoresist followed by electrochemical deposition of gold. For propagation of light along the helix axis, the structure blocks the circular polarization with the same handedness as the helices, whereas it transmits the other, for a frequency range exceeding one octave. The structure is scalable to other frequency ranges and can be used as a compact broadband circular polarizer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Magnetic response of metamaterials at 100 terahertz.

            An array of single nonmagnetic metallic split rings can be used to implement a magnetic resonance, which arises from an inductor-capacitor circuit (LC) resonance, at 100-terahertz frequency. The excitation of the LC resonance in the normal-incidence geometry used in our experiments occurs through the coupling of the electric field of the incident light to the capacitance. The measured optical spectra of the nanofabricated gold structures come very close to the theoretical expectations. Additional numerical simulations show that our structures exhibit a frequency range with negative permeability for a beam configuration in which the magnetic field couples to the LC resonance. Together with an electric response that has negative permittivity, this can lead to materials with a negative index of refraction.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Advanced Materials

                Bookmark

                Author and article information

                Journal
                Applied Physics Letters
                Appl. Phys. Lett.
                AIP Publishing
                0003-6951
                1077-3118
                March 05 2012
                March 05 2012
                : 100
                : 10
                : 101109
                Article
                10.1063/1.3693181
                bd469112-bb81-499a-b8a2-6e0ccb54a298
                © 2012
                History

                Comments

                Comment on this article