34
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The TLR7 agonist induces tumor regression both by promoting CD4 +T cells proliferation and by reversing T regulatory cell-mediated suppression via dendritic cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Treg-induced immunosuppression is now recognized as a key element in enabling tumors to escape immune-mediated destruction. Although topical TLR7 therapies such as imiquimod have been proved successful in the treatment of dermatological malignancy and a number of conditions beyond the FDA-approved indications, the mechanism behind the effect of TLR7 on effector T cell and Treg cell function in cancer immunosurveillance is still not well understood. Here, we found that Loxoribin, one of the TLR7 ligands, could inhibit tumor growth in xenograft models of colon cancer and lung cancer, and these anti-tumor effects of Loxoribin were mediated by promoting CD4 +T cell proliferation and reversing Treg-mediated suppression via dendritic cells (DCs). However, deprivation of IL-6 using a neutralizing antibody abrogated the ability of Loxoribin-treated DCs, which reversed the Treg cell-mediated suppression. Furthermore, adoptive transfer of Loxoribin-treated DCs inhibited the tumor growth in vivo. Thus, this study links TLR7 signaling to the functional control of effector T cells and Treg cells and identifies Loxoribin as a new therapeutic strategy in cancer treatment, which may offer new opportunities to improve the outcome of cancer immunotherapy.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer.

          Immunosuppression may contribute to the progression of cancer. In this study we assessed the structural and functional status of T cells from tumor specimens obtained from patients with early stage non-small cell lung cancer and late-stage ovarian cancer. Although some groups have described structural alterations in the TCR in patients with other malignancies, we did not observe decreased expression of the CD3zeta subunit in the tumor-associated T cells. However, increased percentages of CD4(+)CD25(+) T cells were observed in the non-small cell lung cancer tumor-infiltrating lymphocytes and ovarian cancer tumor-associated lymphocytes. Furthermore, these CD4(+)CD25(+) T cells were found to secrete transforming growth factor-beta, consistent with the phenotype of regulatory T cells. Despite a generalized expression of lymphocyte activation markers in the tumor-associated T-cell populations, the CD8(+) T cells expressed low levels of CD25. To determine whether expression of CD25 could be restored on the CD8 cells, tumor-associated T cells were stimulated with anti-CD3 and anti-CD28 monoclonal antibodies. After stimulation, nearly all of the CD8 T cells expressed CD25. Furthermore, despite the low levels of interleukin 2, IFN-gamma, and tumor necrosis factor-alpha secretion by the tumor-associated and peripheral blood T cells at baseline, stimulation with anti-CD3 and anti-CD28 monoclonal antibodies significantly increased the fraction of cells producing these cytokines. Thus, tumor-associated T cells from patients with early and late-stage epithelial tumors contain increased proportions of CD4(+)CD25(+) T cells that secrete the immunosuppressive cytokine transforming growth factor-beta. Furthermore, our results are consistent with previous reports showing impaired expression of CD25 on CD8(+) T cells in cancer patients. Finally, increased lymphocyte costimulation provided by triggering the CD28 receptor is able to increase CD25 expression and cytokine secretion in tumor-associated T cells. These observations provide evidence for the contribution of regulatory T cells to immune dysfunction in cancer patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells.

            In this study, we investigated whether elimination of CD4+/CD25+ Tregs using the recombinant IL-2 diphtheria toxin conjugate DAB(389)IL-2 (also known as denileukin diftitox and ONTAK) is capable of enhancing the immunostimulatory efficacy of tumor RNA-transfected DC vaccines. We show that DAB(389)IL-2 is capable of selectively eliminating CD25-expressing Tregs from the PBMCs of cancer patients without inducing toxicity on other cellular subsets with intermediate or low expression of CD25. DAB(389)IL-2-mediated Treg depletion resulted in enhanced stimulation of proliferative and cytotoxic T cell responses in vitro but only when DAB(389)IL-2 was omitted during T cell priming. DAB(389)IL-2 significantly reduced the number of Tregs present in the peripheral blood of metastatic renal cell carcinoma (RCC) patients and abrogated Treg-mediated immunosuppressive activity in vivo. Moreover, DAB(389)IL-2-mediated elimination of Tregs followed by vaccination with RNA-transfected DCs significantly improved the stimulation of tumor-specific T cell responses in RCC patients when compared with vaccination alone. Our findings may have implications in the design of immune-based strategies that may incorporate the Treg depletion strategy to achieve potent antitumor immunity with therapeutic impact.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of tumor cells and tumor microenvironment on NK-cell function.

              The ability of tumors to manage an immune-mediated attack has been recently included in the "next generation" of cancer hallmarks. In solid tumors, the microenvironment that is generated during the first steps of tumor development has a pivotal role in immune regulation. An intricate net of cross-interactions occurring between tumor components, stromal cells, and resident or recruited immune cells skews the possible acute inflammatory response toward an aberrant ineffective chronic inflammatory status that favors the evasion from the host's defenses. Natural killer (NK) cells have powerful cytotoxic activity, but their activity may be eluded by the tumor microenvironment. Immunosubversion, immunoediting or immunoselection of poorly immunogenic tumor cells and interference with tumor infiltration play a major role in evading NK-cell responses to tumors. Tumor cells, tumor-associated fibroblasts and tumor-induced aberrant immune cells (i.e. tolerogenic or suppressive macrophages, dendritic cells (DCs) and T cells) can interfere with NK-cell activation pathways or the complex receptor array that regulate NK-cell activation and antitumor activity. Thus, the definition of tumor microenvironment-related immunosuppressive factors, along with the identification of new classes of tissue-residing NK-like innate lymphoid cells, represent key issues to design effective NK-cell-based therapies of solid tumors.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                January 2015
                15 December 2014
                : 6
                : 3
                : 1779-1789
                Affiliations
                1 Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
                Author notes
                Correspondence to: Liping Su, franesulp@ 123456hotmail.com
                Article
                4359331
                25593198
                bd474cbb-4b37-4341-afbf-81629dd99c18
                Copyright: © 2015 Wang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 8 October 2014
                : 16 November 2014
                Categories
                Research Paper

                Oncology & Radiotherapy
                tlr7,treg cells,immune suppression,anti-tumor effect
                Oncology & Radiotherapy
                tlr7, treg cells, immune suppression, anti-tumor effect

                Comments

                Comment on this article