+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The TLR7 agonist induces tumor regression both by promoting CD4 +T cells proliferation and by reversing T regulatory cell-mediated suppression via dendritic cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Treg-induced immunosuppression is now recognized as a key element in enabling tumors to escape immune-mediated destruction. Although topical TLR7 therapies such as imiquimod have been proved successful in the treatment of dermatological malignancy and a number of conditions beyond the FDA-approved indications, the mechanism behind the effect of TLR7 on effector T cell and Treg cell function in cancer immunosurveillance is still not well understood. Here, we found that Loxoribin, one of the TLR7 ligands, could inhibit tumor growth in xenograft models of colon cancer and lung cancer, and these anti-tumor effects of Loxoribin were mediated by promoting CD4 +T cell proliferation and reversing Treg-mediated suppression via dendritic cells (DCs). However, deprivation of IL-6 using a neutralizing antibody abrogated the ability of Loxoribin-treated DCs, which reversed the Treg cell-mediated suppression. Furthermore, adoptive transfer of Loxoribin-treated DCs inhibited the tumor growth in vivo. Thus, this study links TLR7 signaling to the functional control of effector T cells and Treg cells and identifies Loxoribin as a new therapeutic strategy in cancer treatment, which may offer new opportunities to improve the outcome of cancer immunotherapy.

          Related collections

          Most cited references 50

          • Record: found
          • Abstract: not found
          • Article: not found

          Toll-like receptor signalling.

            • Record: found
            • Abstract: found
            • Article: not found

            A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.

            Induction of the adaptive immune response depends on the expression of co-stimulatory molecules and cytokines by antigen-presenting cells. The mechanisms that control the initial induction of these signals upon infection are poorly understood. It has been proposed that their expression is controlled by the non-clonal, or innate, component of immunity that preceded in evolution the development of an adaptive immune system in vertebrates. We report here the cloning and characterization of a human homologue of the Drosophila toll protein (Toll) which has been shown to induce the innate immune response in adult Drosophila. Like Drosophila Toll, human Toll is a type I transmembrane protein with an extracellular domain consisting of a leucine-rich repeat (LRR) domain, and a cytoplasmic domain homologous to the cytoplasmic domain of the human interleukin (IL)-1 receptor. Both Drosophila Toll and the IL-1 receptor are known to signal through the NF-kappaB pathway. We show that a constitutively active mutant of human Toll transfected into human cell lines can induce the activation of NF-kappaB and the expression of NF-kappaB-controlled genes for the inflammatory cytokines IL-1, IL-6 and IL-8, as well as the expression of the co-stimulatory molecule B7.1, which is required for the activation of naive T cells.
              • Record: found
              • Abstract: found
              • Article: not found

              Toll-like receptor control of the adaptive immune responses.

              Recognition of microbial infection and initiation of host defense responses is controlled by multiple mechanisms. Toll-like receptors (TLRs) have recently emerged as a key component of the innate immune system that detect microbial infection and trigger antimicrobial host defense responses. TLRs activate multiple steps in the inflammatory reactions that help to eliminate the invading pathogens and coordinate systemic defenses. In addition, TLRs control multiple dendritic cell functions and activate signals that are critically involved in the initiation of adaptive immune responses. Recent studies have provided important clues about the mechanisms of TLR-mediated control of adaptive immunity orchestrated by dendritic cell populations in distinct anatomical locations.

                Author and article information

                Impact Journals LLC
                January 2015
                15 December 2014
                : 6
                : 3
                : 1779-1789
                1 Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
                Author notes
                Correspondence to: Liping Su, franesulp@
                Copyright: © 2015 Wang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                Research Paper

                Oncology & Radiotherapy

                tlr7, treg cells, immune suppression, anti-tumor effect


                Comment on this article