8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Human Immunodeficiency Virus Promotes Mitochondrial Toxicity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Combined antiretroviral therapies (cART) have had remarkable success in reducing morbidity and mortality among patients infected with human immunodeficiency virus (HIV). However, mild forms of HIV-associated neurocognitive disorders (HAND), characterized by loss of synapses, remain. cART may maintain an undetectable HIV RNA load but does not eliminate the expression of viral proteins such as trans-activator of transcription (Tat) and the envelope glycoprotein gp120 in the brain. These two viral proteins are known to promote synaptic simplifications by several mechanisms, including alteration of mitochondrial function and dynamics. In this review, we aim to outline the many targets and pathways used by viral proteins to alter mitochondria dynamics, which contribute to HIV-induced neurotoxicity. A better understanding of these pathways is crucial for the development of adjunct therapies for HAND. </p>

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of cytochrome c release from mitochondria.

          In healthy cells, cytochrome c (Cyt c) is located in the mitochondrial intermembrane/intercristae spaces, where it functions as an electron shuttle in the respiratory chain and interacts with cardiolipin (CL). Several proapoptotic stimuli induce the permeabilization of the outer membrane, facilitate the communication between intermembrane and intercristae spaces and promote the mobilization of Cyt c from CL, allowing for Cyt c release. In the cytosol, Cyt c mediates the allosteric activation of apoptosis-protease activating factor 1, which is required for the proteolytic maturation of caspase-9 and caspase-3. Activated caspases ultimately lead to apoptotic cell dismantling. Nevertheless, cytosolic Cyt c has been associated also to vital cell functions (i.e. differentiation), suggesting that its release not always occurs in an all-or-nothing fashion and that mitochondrial outer membrane permeabilization may not invariably lead to cell death. This review deals with the events involved in Cyt c release from mitochondria, with special attention to its regulation and final consequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disturbed mitochondrial dynamics and neurodegenerative disorders.

            Mitochondria form a highly interconnected tubular network throughout the cell via a dynamic process, with mitochondrial segments fusing and breaking apart continuously. Strong evidence has emerged to implicate disturbed mitochondrial fusion and fission as central pathological components underpinning a number of childhood and adult-onset neurodegenerative disorders. Several proteins that regulate the morphology of the mitochondrial network have been identified, the most widely studied of which are optic atrophy 1 and mitofusin 2. Pathogenic mutations that disrupt these two pro-fusion proteins cause autosomal dominant optic atrophy and axonal Charcot-Marie-Tooth disease type 2A, respectively. These disorders predominantly affect specialized neurons that require precise shuttling of mitochondria over long axonal distances. Considerable insight has also been gained by carefully dissecting the deleterious consequences of imbalances in mitochondrial fusion and fission on respiratory chain function, mitochondrial quality control (mitophagy), and programmed cell death. Interestingly, these cellular processes are also implicated in more-common complex neurodegenerative disorders, such as Alzheimer disease and Parkinson disease, indicating a common pathological thread and a close relationship with mitochondrial structure, function and localization. Understanding how these fundamental processes become disrupted will prove crucial to the development of therapies for the growing number of neurodegenerative disorders linked to disturbed mitochondrial dynamics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HIV-associated neurocognitive disorder.

              Neurological involvement in HIV is often associated with cognitive impairment. Although severe and progressive neurocognitive impairment has become rare in HIV clinics in the era of potent antiretroviral therapy, most patients with HIV worldwide have poor outcomes on formal neurocognitive tests. In this Review, we describe the manifestations of HIV-associated neurocognitive disorder in the era of effective HIV therapy, outline diagnosis and treatment recommendations, and explore the research questions that remain. Although comorbid disorders, such as hepatitis C infection or epilepsy, might cause some impairment, their prevalence is insufficient to explain the frequency with which it is encountered. HIV disease markers, such as viral load and CD4 cell counts, are not strongly associated with ongoing impairment on treatment, whereas cardiovascular disease markers and inflammatory markers are. New cerebrospinal fluid and neuroimaging biomarkers are needed to detect and follow impairment. Ongoing research efforts to optimise HIV therapy within the CNS, and potentially to intervene in downstream mechanisms of neurotoxicity, remain important avenues for future investigation. Ultimately, the full control of virus in the brain is a necessary step in the goal of HIV eradication. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Neurotoxicity Research
                Neurotox Res
                Springer Nature
                1029-8428
                1476-3524
                November 2017
                July 10 2017
                November 2017
                : 32
                : 4
                : 723-733
                Article
                10.1007/s12640-017-9776-z
                5711529
                28695547
                bd512775-10ca-49ee-8458-bee58176ea03
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article