10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High-Throughput Tertiary Amine Deoxygenated Photopolymerizations for Synthesizing Polymer Libraries

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The huge chemical space potential of synthetic polymers means that in many studies only a small parameter range can be realistically synthesized in a short time and hence the “best” formulations may not be optimum. Throughput is traditionally limited by the need for deoxygenation in radical polymerizations, but advances in photopolymerization now provide opportunities for “in-air” polymerizations. Here, we have developed a protocol using liquid handling robots (or multichannel pipettes) with blue light photolysis of reversible addition fragmentation chain transfer agents and tertiary amine deoxygenation to enable the synthesis of polymer libraries in industry-standard 96-well plates with no specialized infrastructure and no degassing step. The roles of solvents and amine deoxygenators are explored to optimize the polymerization, particularly to look at alternatives to dimethyl sulfoxide (DMSO) for hydrophobic monomer (co)polymerization. DMSO is shown to aid the degassing process but is not easy to remove and hence prevents isolation of pure polymers. In contrast, using dioxane in-plate evaporation or precipitation of the tertiary amine allowed isolation of polymers in-plate. This removed all reaction components yielding pure polymers, which is not easily achieved with systems using metal catalysts and secondary reductants, such as ascorbic acid. As an example of the throughput, in just under 40 h, 392 polymers were synthesized and subsequently analyzed direct from plates by a 96-well plate sampling size exclusion chromatography system to demonstrate reproducibility. Due to less efficient degassing in dioxane (compared to DMSO), the molecular weight and dispersity control were limited in some cases (with acrylates giving the lowest dispersities), but the key aim of this system is to access hundreds of polymers quickly and in a format needed to enable testing. This method enables easy exploration of chemical space and development of screening libraries to identify hits for further study using precision polymerization methods.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          Control of a Living Radical Polymerization of Methacrylates by Light

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bioapplications of RAFT polymerization.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell-specific targeting of nanoparticles by multivalent attachment of small molecules.

              Nanomaterials with precise biological functions have considerable potential for use in biomedical applications. Here we investigate whether multivalent attachment of small molecules can increase specific binding affinity and reveal new biological properties of such nanomaterials. We describe the parallel synthesis of a library comprising 146 nanoparticles decorated with different synthetic small molecules. Using fluorescent magnetic nanoparticles, we rapidly screened the library against different cell lines and discovered a series of nanoparticles with high specificity for endothelial cells, activated human macrophages or pancreatic cancer cells. Hits from the last-mentioned screen were shown to target pancreatic cancer in vivo. The method and described materials could facilitate development of functional nanomaterials for applications such as differentiating cell lines, detecting distinct cellular states and targeting specific cell types.
                Bookmark

                Author and article information

                Journal
                Macromolecules
                Macromolecules
                ma
                mamobx
                Macromolecules
                American Chemical Society
                0024-9297
                1520-5835
                02 October 2019
                22 October 2019
                : 52
                : 20
                : 7603-7612
                Affiliations
                [1] Department of Chemistry and Warwick Medical School, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K.
                Author notes
                Article
                10.1021/acs.macromol.9b01714
                6812069
                bd5e75e1-9c54-4e95-9056-559a8f84f6c3
                Copyright © 2019 American Chemical Society

                This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

                History
                : 15 August 2019
                Categories
                Article
                Custom metadata
                ma9b01714
                ma9b01714

                Polymer chemistry
                Polymer chemistry

                Comments

                Comment on this article