6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bisphenols and Oxidative Stress Biomarkers—Associations Found in Human Studies, Evaluation of Methods Used, and Strengths and Weaknesses of the Biomarkers

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bisphenols, particularly bisphenol A (4,4′-(hexafluoroisopropylidene)-diphenol) (BPA), are suspected of inducing oxidative stress in humans, which may be associated with adverse health outcomes. We investigated the associations between exposure to bisphenols and biomarkers of oxidative stress in human studies over the last 12 years (2008‒2019) related to six health endpoints and evaluated their suitability as effect biomarkers. PubMed database searches identified 27 relevant articles that were used for data extraction. In all studies, BPA exposure was reported, whereas some studies also reported other bisphenols. More than a dozen different biomarkers were measured. The most frequently measured biomarkers were 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-isoprostane) and malondialdehyde (MDA), which almost always were positively associated with BPA. Methodological issues were reported for MDA, mainly the need to handle samples with caution to avoid artefact formation and its measurements using a chromatographic step to distinguish it from similar aldehydes, making some of the MDA results less reliable. Urinary 8-OHdG and 8-isoprostane can be considered the most reliable biomarkers of oxidative stress associated with BPA exposure. Although none of the biomarkers are considered BPA- or organ-specific, the biomarkers can be assessed repeatedly and non-invasively in urine and could help to understand causal relationships.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury

          Increasing appreciation of the causative role of oxidative injury in many disease states places great importance on the reliable assessment of lipid peroxidation. Malondialdehyde (MDA) is one of several low-molecular-weight end products formed via the decomposition of certain primary and secondary lipid peroxidation products. At low pH and elevated temperature, MDA readily participates in nucleophilic addition reaction with 2-thiobarbituric acid (TBA), generating a red, fluorescent 1:2 MDA:TBA adduct. These facts, along with the availability of facile and sensitive methods to quantify MDA (as the free aldehyde or its TBA derivative), have led to the routine use of MDA determination and, particularly, the "TBA test" to detect and quantify lipid peroxidation in a wide array of sample types. However, MDA itself participates in reactions with molecules other than TBA and is a catabolic substrate. Only certain lipid peroxidation products generate MDA (invariably with low yields), and MDA is neither the sole end product of fatty peroxide formation and decomposition nor a substance generated exclusively through lipid peroxidation. Many factors (e.g., stimulus for and conditions of peroxidation) modulate MDA formation from lipid. Additional factors (e.g., TBA-test reagents and constituents) have profound effects on test response to fatty peroxide-derived MDA. The TBA test is intrinsically nonspecific for MDA; nonlipid-related materials as well as fatty peroxide-derived decomposition products other than MDA are TBA positive. These and other considerations from the extensive literature on MDA. TBA reactivity, and oxidative lipid degradation support the conclusion that MDA determination and the TBA test can offer, at best, a narrow and somewhat empirical window on the complex process of lipid peroxidation. The MDA content and/or TBA reactivity of a system provides no information on the precise structures of the "MDA precursor(s)," their molecular origins, or the amount of each formed. Consequently, neither MDA determination nor TBA-test response can generally be regarded as a diagnostic index of the occurrence/extent of lipid peroxidation, fatty hydroperoxide formation, or oxidative injury to tissue lipid without independent chemical evidence of the analyte being measured and its source. In some cases, MDA/TBA reactivity is an indicator of lipid peroxidation; in other situations, no qualitative or quantitative relationship exists among sample MDA content, TBA reactivity, and fatty peroxide tone. Utilization of MDA analysis and/or the TBA test and interpretation of sample MDA content and TBA test response in studies of lipid peroxidation require caution, discretion, and (especially in biological systems) correlative data from other indices of fatty peroxide formation and decomposition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds.

            The endocrine-disrupting activities of bisphenol A (BPA) and 19 related compounds were comparatively examined by means of different in vitro and in vivo reporter assays. BPA and some related compounds exhibited estrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Tetrachlorobisphenol A (TCBPA) showed the highest activity, followed by bisphenol B, BPA, and tetramethylbisphenol A (TMBPA); 2,2-bis(4-hydroxyphenyl)-1-propanol, 1,1-bis(4-hydroxyphenyl)propionic acid and 2,2-diphenylpropane showed little or no activity. Anti-estrogenic activity against 17beta-estradiol was observed with TMBPA and tetrabromobisphenol A (TBBPA). TCBPA, TBBPA, and BPA gave positive responses in the in vivo uterotrophic assay using ovariectomized mice. In contrast, BPA and some related compounds showed significant inhibitory effects on the androgenic activity of 5alpha-dihydrotestosterone in mouse fibroblast cell line NIH3T3. TMBPA showed the highest antagonistic activity, followed by bisphenol AF, bisphenol AD, bisphenol B, and BPA. However, TBBPA, TCBPA, and 2,2-diphenylpropane were inactive. TBBPA, TCBPA, TMBPA, and 3,3'-dimethylbisphenol A exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and other derivatives did not show such activity. The results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Importance of the lipid peroxidation biomarkers and methodological aspects FOR malondialdehyde quantification

              Free radicals induce lipid peroxidation, playing an important role in pathological processes. The injury mediated by free radicals can be measured by conjugated dienes, malondialdehyde, 4-hydroxynonenal, and others. However, malondialdehyde has been pointed out as the main product to evaluate lipid peroxidation. Most assays determine malondialdehyde by its reaction with thiobarbituric acid, which can be measured by indirect (spectrometry) and direct methodologies (chromatography). Though there is some controversy among the methodologies, the selective HPLC-based assays provide a more reliable lipid peroxidation measure. This review describes significant aspects about MDA determination, its importance in pathologies and biological samples treatment.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                21 May 2020
                May 2020
                : 17
                : 10
                : 3609
                Affiliations
                [1 ]Department of Environmental Health, Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213 Oslo, Norway; inger-lise.steffensen@ 123456fhi.no (I.-L.S.); hubert.dirven@ 123456fhi.no (H.D.)
                [2 ]Départment “Adaption du Vivant“, Physiologie Moléculaire et Adaptation, Muséum National d’Histoire Naturelle, UMR 7221 MNHN/CNRS, 7 rue Cuvier, 75005 Paris, France; stephan.couderq@ 123456mnhn.fr or
                [3 ]Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France; arthur.david@ 123456ehesp.fr (A.D.); or shereencynthia@ 123456gmail.com (S.C.D.)
                [4 ]Department of Radiology and Physical Medicine, and Center for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; marieta@ 123456ugr.es (M.F.F.); vmustieles@ 123456ugr.es (V.M.); andrearc@ 123456ugr.es (A.R.-C.)
                [5 ]Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
                Author notes
                [* ]Correspondence: tim.hofer@ 123456fhi.no ; Tel.: +47-21076671
                Author information
                https://orcid.org/0000-0002-1859-0083
                https://orcid.org/0000-0002-0405-0860
                https://orcid.org/0000-0001-6417-8914
                https://orcid.org/0000-0002-2010-5438
                https://orcid.org/0000-0003-4757-2033
                Article
                ijerph-17-03609
                10.3390/ijerph17103609
                7277872
                32455625
                bd6d1356-36b6-43f6-96e5-62b8ed24a4c9
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 April 2020
                : 15 May 2020
                Categories
                Review

                Public health
                adverse outcome pathway (aop),analytical methods,antioxidant,bisphenol f (bpf),bisphenol s (bps),effect biomarker,hbm4eu,4-hydroxy-2-nonenal-mercapturic acid (hne-ma),reactive nitrogen species (rns),reactive oxygen species (ros)

                Comments

                Comment on this article