8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of ARPC2 in Human Gastric Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gastric cancer continues to be the second most frequent cause of cancer deaths worldwide. However, the exact molecular mechanisms are still unclear. Further research to find potential targets for therapy is critical and urgent. In this study, we found that ARPC2 promoted cell proliferation and invasion in the human cancer cell line MKN-28 using a cell total number assay, MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay, cell colony formation assay, migration assay, invasion assay, and wound healing assay. For downstream pathways, CTNND1, EZH2, BCL2L2, CDH2, VIM, and EGFR were upregulated by ARPC2, whereas PTEN, BAK, and CDH1 were downregulated by ARPC2. In a clinical study, we examined the expression of ARPC2 in 110 cases of normal human gastric tissues and 110 cases of human gastric cancer tissues. ARPC2 showed higher expression in gastric cancer tissues than in normal gastric tissues. In the association analysis of 110 gastric cancer tissues, ARPC2 showed significant associations with large tumor size, lymph node invasion, and high tumor stage. In addition, ARPC2-positive patients exhibited lower RFS and OS rates compared with ARPC2-negative patients. We thus identify that ARPC2 plays an aneretic role in human gastric cancer and provided a new target for gastric cancer therapy.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          The Human Arp2/3 Complex Is Composed of Evolutionarily Conserved Subunits and Is Localized to Cellular Regions of Dynamic Actin Filament Assembly

          The Arp2/3 protein complex has been implicated in the control of actin polymerization in cells. The human complex consists of seven subunits which include the actin related proteins Arp2 and Arp3, and five others referred to as p41-Arc, p34-Arc, p21-Arc, p20-Arc, and p16-Arc (Arp complex). We have determined the predicted amino acid sequence of all seven subunits. Each has homologues in diverse eukaryotes, implying that the structure and function of the complex has been conserved through evolution. Human Arp2 and Arp3 are very similar to family members from other species. p41-Arc is a new member of the Sop2 family of WD (tryptophan and aspartate) repeat–containing proteins and may be posttranslationally modified, suggesting that it may be involved in regulating the activity and/or localization of the complex. p34-Arc, p21-Arc, p20-Arc, and p16-Arc define novel protein families. We sought to evaluate the function of the Arp2/3 complex in cells by determining its intracellular distribution. Arp3, p34-Arc, and p21-Arc were localized to the lamellipodia of stationary and locomoting fibroblasts, as well to Listeria monocytogenes assembled actin tails. They were not detected in cellular bundles of actin filaments. Taken together with the ability of the Arp2/3 complex to induce actin polymerization, these observations suggest that the complex promotes actin assembly in lamellipodia and may participate in lamellipodial protrusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose

            We identified four polypeptides of 47, 44, 40, and 35 kD that bind to profilin-Sepharose and elute with high salt. When purified by conventional chromatography using an antibody to the 47-kD polypeptide, these four polypeptides copurified as a stoichiometric complex together with three additional polypeptides of 19, 18, and 13 kD that varied in their proportions to the other polypeptides. Partial protein sequences showed that the 47-kD polypeptide is a homologue of S. pombe act2 and the 44-kD polypeptide is a homologue of S. cerevisiae ACT2, both unconventional actins. The 40-kD polypeptide contains a sequence similar to the WD40 motif of the G beta subunit of a trimeric G-protein from Dictyostelium discoideum. From partial sequences, the 35-, 19-, and 18-kD polypeptides appear to be novel proteins. On gel filtration the complex of purified polypeptides cochromatograph with a Stokes' radius of 4.8 nm, a value consistent with a globular particle of 220 kD containing one copy of each polypeptide. Cell extracts also contain components of the complex that do not bind the profilin column. Affinity purified antibodies localize 47- and 18/19-kD polypeptides in the cortex and filopodia of Acanthamoeba. Antibodies to the 47-kD unconventional actin cross-react on immunoblots with polypeptides of similar size in Dictyostelium, rabbit muscle, and conventional preparations of rabbit muscle actin but do not react with actin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced expression of transcriptional intermediary factor 1 gamma promotes metastasis and indicates poor prognosis of hepatocellular carcinoma.

              Transcriptional intermediary factor 1 gamma (TIF1γ) may play either a potential tumor-suppressor or -promoter role in cancer. Here we report on a critical role of TIF1γ in the progression of hepatocellular carcinoma (HCC). Reduced expression of TIF1γ was detected in HCC, especially in advanced HCC tissues, compared to adjacent noncancerous tissues. HCC patients with low TIF1γ expression had shorter overall survival times and higher recurrence rates than those with high TIF1γ expression. Reduced TIF1γ expression was an independent and significant risk factor for recurrence and survival after curative resection. In HCC cells, TIF1γ played a dual role: It promoted tumor growth in early-stage HCC, but not in advanced-stage HCC, whereas it inhibited invasion and metastasis in both early- and advanced-stage HCC. Mechanistically, we confirmed that TIF1γ inhibited transforming growth factor-β/ Drosophila mothers against decapentaplegic protein (TGF-β/Smad) signaling through monoubiquitination of Smad4 and suppressed the formation of Smad2/3/4 complex in HCC cells. TGF-β-inducing cytostasis and metastasis were both inhibited by TIF1γ in HCC. We further proved that TIF1γ suppressed cyotstasis-related TGF-β/Smad downstream c-myc down-regulation, as well as p21/cip1 and p15/ink4b up-regulation in early-stage HCC. Meanwhile, TGF-β inducible epithelial-mesenchymal transition and TGF-β/Smad downstream metastatic cascades, including phosphatase and tensin homolog deleted on chromosome ten down-regulation, chemokine (CXC motif) receptor 4 and matrix metalloproteinase 1 induction, and epidermal growth factor receptor- and protein kinase B-signaling transactivation, were inhibited by TIF1γ. In addition, we found that the down-regulation of TIF1γ in HCC was caused by hypermethylation of CpG islands in the TIF1γ promoter, and demonstrated that the combination of TIF1γ and phosphorylated Smad2 was a more powerful predictor of poor prognosis.
                Bookmark

                Author and article information

                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi
                0962-9351
                1466-1861
                2017
                13 June 2017
                : 2017
                : 5432818
                Affiliations
                1Department of General Surgery, Third Affiliated Hospital (Hefei First People's Hospital) of Anhui Medical University, Hefei, China
                2Department of Gastrointestinal Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
                Author notes

                Academic Editor: Yingqiu Xie

                Author information
                http://orcid.org/0000-0002-5571-3855
                Article
                10.1155/2017/5432818
                5485321
                28694563
                bd7a441f-405d-4488-b032-5a9d8e1a6e46
                Copyright © 2017 Jun Zhang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 December 2016
                : 6 March 2017
                Funding
                Funded by: National Natural Science Foundation
                Award ID: 81472493
                Categories
                Research Article

                Immunology
                Immunology

                Comments

                Comment on this article