Blog
About

31
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diabetes Complications: The MicroRNA Perspective

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 52

          • Record: found
          • Abstract: found
          • Article: not found

          The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.

          lin-4 is essential for the normal temporal control of diverse postembryonic developmental events in C. elegans. lin-4 acts by negatively regulating the level of LIN-14 protein, creating a temporal decrease in LIN-14 protein starting in the first larval stage (L1). We have cloned the C. elegans lin-4 locus by chromosomal walking and transformation rescue. We used the C. elegans clone to isolate the gene from three other Caenorhabditis species; all four Caenorhabditis clones functionally rescue the lin-4 null allele of C. elegans. Comparison of the lin-4 genomic sequence from these four species and site-directed mutagenesis of potential open reading frames indicated that lin-4 does not encode a protein. Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin-4 regulates lin-14 translation via an antisense RNA-RNA interaction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biochemistry and molecular cell biology of diabetic complications.

            Diabetes-specific microvascular disease is a leading cause of blindness, renal failure and nerve damage, and diabetes-accelerated atherosclerosis leads to increased risk of myocardial infarction, stroke and limb amputation. Four main molecular mechanisms have been implicated in glucose-mediated vascular damage. All seem to reflect a single hyperglycaemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain. This integrating paradigm provides a new conceptual framework for future research and drug discovery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.

              Epithelial to mesenchymal transition (EMT) facilitates tissue remodelling during embryonic development and is viewed as an essential early step in tumour metastasis. We found that all five members of the microRNA-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) and miR-205 were markedly downregulated in cells that had undergone EMT in response to transforming growth factor (TGF)-beta or to ectopic expression of the protein tyrosine phosphatase Pez. Enforced expression of the miR-200 family alone was sufficient to prevent TGF-beta-induced EMT. Together, these microRNAs cooperatively regulate expression of the E-cadherin transcriptional repressors ZEB1 (also known as deltaEF1) and SIP1 (also known as ZEB2), factors previously implicated in EMT and tumour metastasis. Inhibition of the microRNAs was sufficient to induce EMT in a process requiring upregulation of ZEB1 and/or SIP1. Conversely, ectopic expression of these microRNAs in mesenchymal cells initiated mesenchymal to epithelial transition (MET). Consistent with their role in regulating EMT, expression of these microRNAs was found to be lost in invasive breast cancer cell lines with mesenchymal phenotype. Expression of the miR-200 family was also lost in regions of metaplastic breast cancer specimens lacking E-cadherin. These data suggest that downregulation of the microRNAs may be an important step in tumour progression.
                Bookmark

                Author and article information

                Affiliations
                1Diabetes Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
                2Department of Medicine and Therapeutics, Li Ka Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
                Author notes
                Corresponding author: Phillip Kantharidis, phillip.kantharidis@ 123456bakeridi.edu.au .
                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                July 2011
                20 June 2011
                : 60
                : 7
                : 1832-1837
                3121430
                21709278
                0082
                10.2337/db11-0082
                © 2011 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                Product
                Categories
                Perspectives in Diabetes

                Endocrinology & Diabetes

                Comments

                Comment on this article