27
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New orally active anticoagulant agents for the prevention and treatment of venous thromboembolism in cancer patients

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with cancer have a 6–7-fold higher risk of venous thromboembolism (VTE) as compared with non-cancer patients. Effective and safe anticoagulation for the prevention and treatment of VTE is the cornerstone of the management of patients with cancer, aiming to decrease morbidity and mortality and to improve quality of life. Unfractionated heparin, low molecular weight heparins, fondaparinux and vitamin K antagonists (VKAs) are used in the prevention and treatment of VTE in cancer patients. Heparins and fondaparinux are administered subcutaneously. VKAs are orally active, but they have a narrow therapeutic window, numerous food and drug interactions, and treatment requires regular laboratory monitoring and dose adjustment. These limitations among others have important negative impact on the quality of life of patients and decrease adherence to the treatment. New orally active anticoagulant (NOAC) agents are specific inhibitors of activated factor Xa (FXa) (rivaroxaban and apixaban) or thrombin (dabigatran). It is expected that NOACs will improve antithrombotic treatment. Cancer patients are a particular group that could benefit from treatment with NOACs. However, NOACs present some significant interactions with drugs frequently used in cancer patients, which might influence their pharmacokinetics, compromising their efficacy and safety. In the present review, we analyzed the available data from the subgroups of patients with active cancer who were included in Phase III clinical trials that assessed the efficacy and safety of NOACs in the prevention and treatment of VTE. The data from the Phase III trials in prophylaxis of VTE by rivaroxaban or apixaban highlight that these two agents, although belonging to the same pharmacological group (direct inhibitors of factor Xa), have substantially different profiles of efficacy and safety, especially in hospitalized acutely ill medical patients with active cancer. A limited number of patients with VTE and active cancer were included in the Phase III trials (EINSTEIN, AMPLIFY, and RE-COVER) which evaluated the efficacy and safety of NOACs in the acute phase and secondary prevention of VTE. Although, from a conceptual point of view, NOACs could be an attractive alternative for the treatment of VTE in cancer patients, the available data do not support this option. In addition, due to the elimination of the NOACs by the liver and renal pathway as well as because of their pharmacological interactions with drugs which are frequently used in cancer patients, an eventual use of these drugs in cancer patients should be extremely cautious and be restricted only to patients presenting with contraindications for low molecular weight heparins, fondaparinux, or VKAs. The analysis of the available data presented in this review reinforces the request for the design of new Phase III clinical trials for the assessment of the efficacy and safety of NOACs in specific populations of patients with cancer.

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Prevention of VTE in nonsurgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.

          This guideline addressed VTE prevention in hospitalized medical patients, outpatients with cancer, the chronically immobilized, long-distance travelers, and those with asymptomatic thrombophilia. This guideline follows methods described in Methodology for the Development of Antithrombotic Therapy and Prevention of Thrombosis Guidelines: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines in this supplement. For acutely ill hospitalized medical patients at increased risk of thrombosis, we recommend anticoagulant thromboprophylaxis with low-molecular-weight heparin (LMWH), low-dose unfractionated heparin (LDUH) bid, LDUH tid, or fondaparinux (Grade 1B) and suggest against extending the duration of thromboprophylaxis beyond the period of patient immobilization or acute hospital stay (Grade 2B). For acutely ill hospitalized medical patients at low risk of thrombosis, we recommend against the use of pharmacologic prophylaxis or mechanical prophylaxis (Grade 1B). For acutely ill hospitalized medical patients at increased risk of thrombosis who are bleeding or are at high risk for major bleeding, we suggest mechanical thromboprophylaxis with graduated compression stockings (GCS) (Grade 2C) or intermittent pneumatic compression (IPC) (Grade 2C). For critically ill patients, we suggest using LMWH or LDUH thromboprophylaxis (Grade 2C). For critically ill patients who are bleeding or are at high risk for major bleeding, we suggest mechanical thromboprophylaxis with GCS and/or IPC at least until the bleeding risk decreases (Grade 2C). In outpatients with cancer who have no additional risk factors for VTE we suggest against routine prophylaxis with LMWH or LDUH (Grade 2B) and recommend against the prophylactic use of vitamin K antagonists (Grade 1B). Decisions regarding prophylaxis in nonsurgical patients should be made after consideration of risk factors for both thrombosis and bleeding, clinical context, and patients' values and preferences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural history of venous thromboembolism.

            Most deep vein thromboses (DVTs) start in the calf, and most probably resolve spontaneously. Thrombi that remain confined to the calf rarely cause leg symptoms or symptomatic pulmonary embolism (PE). The probability that calf DVT will extend to involve the proximal veins and subsequently cause PE increases with the severity of the initiating prothrombotic stimulus. Although acute venous thromboembolism (VTE) usually presents with either leg or pulmonary symptoms, most patients have thrombosis at both sites at the time of diagnosis. Proximal DVTs resolve slowly during treatment with anticoagulants, and thrombi remain detectable in half of the patients after a year. Resolution of DVT is less likely in patients with a large initial thrombus or cancer. About 10% of patients with symptomatic DVTs develop severe post-thrombotic syndrome within 5 years, and recurrent ipsilateral DVT increases this risk. About 10% of PEs are rapidly fatal, and an additional 5% cause death later, despite diagnosis and treatment. About 50% of diagnosed PEs are associated with right ventricular dysfunction, which is associated with a approximately 5-fold greater in-hospital mortality. There is approximately 50% resolution of PE after 1 month of treatment, and perfusion eventually returns to normal in two thirds of patients. About 5% of treated patients with PE develop pulmonary hypertension as a result of poor resolution. After a course of treatment, the risk of recurrent thrombosis is higher (ie, approximately 10% per patient-year) in patients without reversible risk factors, in those with cancer, and in those with prothrombotic biochemical abnormalities such as antiphospholipid antibodies and homozygous factor V Leiden.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Apixaban versus Enoxaparin for Thromboprophylaxis in Medically Ill Patients

              The efficacy and safety of prolonging prophylaxis for venous thromboembolism in medically ill patients beyond hospital discharge remain uncertain. We hypothesized that extended prophylaxis with apixaban would be safe and more effective than short-term prophylaxis with enoxaparin. In this double-blind, double-dummy, placebo-controlled trial, we randomly assigned acutely ill patients who had congestive heart failure or respiratory failure or other medical disorders and at least one additional risk factor for venous thromboembolism and who were hospitalized with an expected stay of at least 3 days to receive apixaban, administered orally at a dose of 2.5 mg twice daily for 30 days, or enoxaparin, administered subcutaneously at a dose of 40 mg once daily for 6 to 14 days. The primary efficacy outcome was the 30-day composite of death related to venous thromboembolism, pulmonary embolism, symptomatic deep-vein thrombosis, or asymptomatic proximal-leg deep-vein thrombosis, as detected with the use of systematic bilateral compression ultrasonography on day 30. The primary safety outcome was bleeding. All efficacy and safety outcomes were independently adjudicated. A total of 6528 subjects underwent randomization, 4495 of whom could be evaluated for the primary efficacy outcome--2211 in the apixaban group and 2284 in the enoxaparin group. Among the patients who could be evaluated, 2.71% in the apixaban group (60 patients) and 3.06% in the enoxaparin group (70 patients) met the criteria for the primary efficacy outcome (relative risk with apixaban, 0.87; 95% confidence interval [CI], 0.62 to 1.23; P=0.44). By day 30, major bleeding had occurred in 0.47% of the patients in the apixaban group (15 of 3184 patients) and in 0.19% of the patients in the enoxaparin group (6 of 3217 patients) (relative risk, 2.58; 95% CI, 1.02 to 7.24; P=0.04). In medically ill patients, an extended course of thromboprophylaxis with apixaban was not superior to a shorter course with enoxaparin. Apixaban was associated with significantly more major bleeding events than was enoxaparin. (Funded by Bristol-Myers Squibb and Pfizer; ClinicalTrials.gov number, NCT00457002.).
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                2014
                13 June 2014
                : 10
                : 423-436
                Affiliations
                [1 ]Service d’Hématologie Biologique, Hôpital Tenon, Hôpitaux Universitaires Est Parisien Assistance Publique Hôpitaux de Paris, Paris, France
                [2 ]ER2UPMC, Faculté de Médecine Pierre et Marie Curie, Université Paris VI, Paris, France
                [3 ]Service de Médecine interne, Hôpital Louis Mourier, Université Paris 7, Assistance Publique Hôpitaux de Paris, EA REMES, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
                Author notes
                Correspondence: Grigoris T Gerotziafas, Service d’Hématologie Biologique, Hôpital Tenon, 4, rue de la Chine, 75020, Paris, Cedex 20, France, Tel +33 1 5601 8063, Fax +33 1 5601 6044, Email grigoris.gerotziafas@ 123456tnn.aphp.fr
                Article
                tcrm-10-423
                10.2147/TCRM.S49063
                4063799
                24966680
                bd93e9b1-f065-42f0-b850-83dbfb447d88
                © 2014 Gerotziafas et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Medicine
                rivaroxaban,apixaban,dabigatran,antithrombotic treatment
                Medicine
                rivaroxaban, apixaban, dabigatran, antithrombotic treatment

                Comments

                Comment on this article