18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and functional brain changes in early- and mid-stage primary open-angle glaucoma using voxel-based morphometry and functional magnetic resonance imaging

      research-article
      , MD a , b , , PhD b , , , PhD b , , PhD c , , PhD b , , PhD b
      Medicine
      Wolters Kluwer Health
      BOLD-fMRI, gray, POAG, VBM-DARTEL

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To investigate structural and functional brain changes in patients with primary open-angle glaucoma (POAG) by using voxel-based morphometry based on diffeomorphic anatomical registration through exponentiated Lie algebra (VBM-DARTEL) and blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), respectively.

          Thirteen patients diagnosed with POAG and 13 age- and sex-matched healthy controls were enrolled in the study. For each participant, high-resolution structural brain imaging and blood flow imaging were acquired on a 3.0-Tesla magnetic resonance imaging (MRI) scanner. Structural and functional changes between the POAG and control groups were analyzed. An analysis was carried out to identify correlations between structural and functional changes acquired in the previous analysis and the retinal nerve fiber layer (RNFL).

          Patients in the POAG group showed a significant ( P < 0.001) volume increase in the midbrain, left brainstem, frontal gyrus, cerebellar vermis, left inferior parietal lobule, caudate nucleus, thalamus, precuneus, and Brodmann areas 7, 18, and 46. Moreover, significant ( P < 0.001) BOLD signal changes were observed in the right supramarginal gyrus, frontal gyrus, superior frontal gyrus, left inferior parietal lobule, left cuneus, and left midcingulate area; many of these regions had high correlations with the RNFL.

          Patients with POAG undergo widespread and complex changes in cortical brain structure and blood flow. (ClinicalTrials.gov number: NCT02570867).

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Distal axonopathy with structural persistence in glaucomatous neurodegeneration.

          An early hallmark of neuronal degeneration is distal transport loss and axon pathology. Glaucoma involves the degeneration of retinal ganglion cell (RGC) neurons and their axons in the optic nerve. Here we show that, like other neurodegenerations, distal axon injury appears early in mouse glaucoma. Where RGC axons terminate in the superior colliculus, reduction of active transport follows a retinotopic pattern resembling glaucomatous vision loss. Like glaucoma, susceptibility to transport deficits increases with age and is not necessarily associated with elevated ocular pressure. Transport deficits progress distal-to-proximal, appearing in the colliculus first followed by more proximal secondary targets and then the optic tract. Transport persists through the optic nerve head before finally failing in the retina. Although axon degeneration also progresses distal-to-proximal, myelinated RGC axons and their presynaptic terminals persist in the colliculus well after transport fails. Thus, distal transport loss is predegenerative and may represent a therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex.

            The pathology of glaucoma has been extensively studied at the level of the retina and optic nerve head. Here the first clinicopathological case of human glaucoma is reported demonstrating degenerative changes in the brain involving the intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Pathological evidence of neural degeneration in this patient is correlated with clinical, optic nerve head, visual field, and neuroradiology findings. Neuropathology in the glaucoma brain is compared to age matched controls. In the presence of advanced human glaucoma with 50% visual field loss, neural damage is evident in multiple vision stations within the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ganglion cell losses underlying visual field defects from experimental glaucoma.

              To investigate the relationship between ganglion cell losses and visual field defects caused by glaucoma. Behavioral perimetry and histology data were obtained from 10 rhesus monkeys with unilateral experimental glaucoma that was induced by argon laser treatments to their trabecular meshwork. After significant visual field defects had developed, the retinas were collected for histologic analysis. The ganglion cells were counted by light microscopy in cresyl violet-stained retina sections, and the percentage of ganglion cell loss (treated to control eye counts) was compared with the depth of visual field defect (treated to control eye thresholds) at corresponding retinal and perimetry test locations. Sensitivity losses as a function of ganglion cell losses were analyzed for Goldmann III, white and Goldmann V, and short- and long-wavelength perimetry test stimuli. The relationship between the proportional losses of ganglion cells and visual sensitivity, measured with either white or colored stimuli, was nonlinear. With white stimuli, the visual sensitivity losses were relatively constant (approximately 6 dB) for ganglion cell losses of less than 30% to 50%, and then with greater amounts of cell loss the visual defects were more systematically related to ganglion cell loss (approximately 0.42 dB/percent cell loss). The forms of the neural-sensitivity relationships for visual defects measured with short- or long-wavelength perimetry stimuli were similar when the visual thresholds were normalized to compensate for differences in expected normal thresholds for white and colored perimetry stimuli. Current perimetry regimens with either white or monochromatic stimuli do not provide a useful estimate of ganglion cell loss until a substantial proportion have died. The variance in ganglion cell loss is large for mild defects that would be diagnostic of early glaucoma and for visual field locations near the fovea where sensitivity losses occur relatively late in the disease process. The neural-sensitivity relationships were essentially identical for both white and monochromatic test stimuli, and it therefore seems unlikely that the higher sensitivity for detecting glaucoma with monochromatic stimuli is based on the size-dependent susceptibility of ganglion cells to injury from glaucoma.
                Bookmark

                Author and article information

                Journal
                Medicine (Baltimore)
                Medicine (Baltimore)
                MEDI
                Medicine
                Wolters Kluwer Health
                0025-7974
                1536-5964
                March 2017
                03 March 2017
                : 96
                : 9
                : e6139
                Affiliations
                [a ]Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-sen University
                [b ]Department of Ophthalmology
                [c ]Department of Imaging, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
                Author notes
                []Correspondence: Qing Zhou, Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China (e-mail: kerryzh@ 123456163.com ).
                Article
                MD-D-16-01354 06139
                10.1097/MD.0000000000006139
                5340440
                28248867
                bdabd289-b531-4560-ae43-2047309bb05c
                Copyright © 2017 the Author(s). Published by Wolters Kluwer Health, Inc.

                This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc/4.0

                History
                : 1 April 2016
                : 7 January 2017
                : 23 January 2017
                Categories
                5800
                Research Article
                Observational Study
                Custom metadata
                TRUE

                bold-fmri,gray,poag,vbm-dartel
                bold-fmri, gray, poag, vbm-dartel

                Comments

                Comment on this article