18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabolic viability based high throughput assays like MTT and MTS are widely used in assessing the cell viability. However, alteration in both mitochondrial content and metabolism can influence the metabolic viability of cells and radiation is a potential mitochondrial biogenesis inducer. Therefore, we tested if MTT assay is a true measure of radiation induced cell death in widely used cell lines. Radiation induced cellular growth inhibition was performed by enumerating cell numbers and metabolic viability using MTT assay at 24 and 48 hours (hrs) after exposure. The extent of radiation induced reduction in cell number was found to be larger than the decrease in MTT reduction in all the cell lines tested. We demonstrated that radiation induces PGC-1α and TFAM to stimulate mitochondrial biogenesis leading to increased levels of SDH-A and enhanced metabolic viability. Radiation induced disturbance in calcium (Ca 2+) homeostasis also plays a crucial role by making the mitochondria hyperactive. These findings suggest that radiation induces mitochondrial biogenesis and hyperactivation leading to increased metabolic viability and MTT reduction. Therefore, conclusions drawn on radiation induced growth inhibition based on metabolic viability assays are likely to be erroneous as it may not correlate with growth inhibition and/or loss of clonogenic survival.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          PGC1α and mitochondrial metabolism--emerging concepts and relevance in ageing and neurodegenerative disorders.

          PGC1α is a transcriptional coactivator that is a central inducer of mitochondrial biogenesis in cells. Recent work highlighted that PGC1α can also modulate the composition and functions of individual mitochondria. Therefore, it is emerging that PGC1α is controlling global oxidative metabolism by performing two types of remodelling: (1) cellular remodelling through mitochondrial biogenesis, and (2) organelle remodelling through alteration in the intrinsic properties of mitochondria. The elevated oxidative metabolism associated with increased PGC1α activity could be accompanied by an increase in reactive oxygen species (ROS) that are primarily generated by mitochondria. However, increasing evidence suggests that this is not the case, as PGC1α is also a powerful regulator of ROS removal by increasing the expression of numerous ROS-detoxifying enzymes. Therefore, PGC1α, by controlling both the induction of mitochondrial metabolism and the removal of its ROS by-products, would elevate oxidative metabolism and minimize the impact of ROS on cell physiology. In this Commentary, we discuss how the biogenesis and remodelling of mitochondria that are elicited by PGC1α contribute to an increase in oxidative metabolism and the preservation of ROS homeostasis. Finally, we examine the importance of these findings in ageing and neurodegenerative disorders, conditions that are associated with impaired mitochondrial functions and ROS balance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Limitations of MTT and MTS-Based Assays for Measurement of Antiproliferative Activity of Green Tea Polyphenols

            Background The chemopreventive effect of green tea polyphenols, such as (-)-epigallocatechin-3-gallate (EGCG), has been well demonstrated in cell culture studies. However, a wide range of IC50 concentrations has been observed in published studies of the anti-proliferative activity of EGCG from different laboratories. Although the susceptibility to EGCG treatment is largely dependent on cancer cell type, the particular cell viability and proliferation assays utilized may significantly influence quantitative results reported in the literature. Methodology/Principal Findings We compared five widely used methods to measure cell proliferation and viability after EGCG treatment using LNCaP prostate cancer cells and MCF-7 breast cancer cells. Both methods using dyes to quantify adenosine triphosphate (ATP) and deoxynucleic acid (DNA) showed accuracy in the measurement of viable cells when compared to trypan blue assay and results showed good linear correlation (r = 0.95). However, the use of MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) as indicators of metabolically active mitochondria overestimated the number of viable cells by comparison with the ATP, DNA, or trypan blue determinations. As a result, the observed IC50 concentration of EGCG was 2-fold higher using MTT and MTS compared to dyes quantifying ATP and DNA. In contrast, when cells were treated with apigenin MTT and MTS assays showed consistent results with ATP, DNA, or trypan blue assays. Conclusions/Significance These results demonstrate that MTT and MTS -based assays will provide an underestimation of the anti-proliferative effect of EGCG, and suggest the importance of careful evaluation of the method for in vitro assessment of cell viability and proliferation depending on the chemical nature of botanical supplements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen.

              Transient generation of reactive oxygen or nitrogen (ROS/RNS), detected with dihydrodichlorofluoroscein by fluorescence microscopy, occurs within minutes of exposing cells to ionizing radiation. In the 1-10 Gy dose range, the amount of ROS/RNS produced/cell is constant, but the percentage of producing cells increases with dose (20 to 80%). Reversible depolarization of the mitochondrial membrane potential () and decrease in fluorescence of a mitochondria-entrapped dye, calcein, are observed coincidentally. Radiation-induced ROS/RNS, depolarization, and calcein fluorescence decrease are inhibited by the mitochondrial permeability transition inhibitor, cyclosporin A, but not the structural analogue, cyclosporin H. Radiation-stimulated ROS/RNS is also inhibited by overexpressing the Ca(2+)-binding protein, calbindin 28K, or treating cells with an intracellular Ca(2+) chelator. Radiation-induced ROS/RNS is observed in several cell types with the exception of rho(o) cells deficient in mitochondrial electron transport. rho(o) cells show neither radiation-induced ROS/RNS production nor depolarization. We propose that radiation damage in a few mitochondria is transmitted via a reversible, Ca(2+)-dependent mitochondrial permeability transition to adjacent mitochondria with resulting enhanced ROS/RNS generation. Measurements of radiation-induced mitogen-activated protein kinase activity indicate that this sensing/amplification mechanism is necessary for activation of some cytoplasmic signaling pathways by low doses of radiation.
                Bookmark

                Author and article information

                Contributors
                anbhatt@yahoo.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                24 January 2018
                24 January 2018
                2018
                : 8
                : 1531
                Affiliations
                [1 ]ISNI 0000 0004 1755 8967, GRID grid.419004.8, Institute of Nuclear Medicine and Allied Sciences, ; Delhi, 110 054 India
                [2 ]ISNI 0000 0004 1808 0942, GRID grid.452404.3, Present Address: Shanghai Proton and Heavy Ion Center, ; Shanghai, China
                Article
                19930
                10.1038/s41598-018-19930-w
                5784148
                29367754
                bdaec2b7-496d-42b1-9be3-ba997358cbba
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 19 September 2017
                : 5 January 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article