42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Ligand-Gated Association between Cytoplasmic Domains of UNC5 and DCC Family Receptors Converts Netrin-Induced Growth Cone Attraction to Repulsion

      , , , , ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Netrins are bifunctional: they attract some axons and repel others. Netrin receptors of the Deleted in Colorectal Cancer (DCC) family are implicated in attraction and those of the UNC5 family in repulsion, but genetic evidence also suggests involvement of the DCC protein UNC-40 in some cases of repulsion. To test whether these proteins form a receptor complex for repulsion, we studied the attractive responses of Xenopus spinal axons to netrin-1, which are mediated by DCC. We show that attraction is converted to repulsion by expression of UNC5 proteins in these cells, that this repulsion requires DCC function, that the UNC5 cytoplasmic domain is sufficient to effect the conversion, and that repulsion can be initiated by netrin-1 binding to either UNC5 or DCC. The isolated cytoplasmic domains of DCC and UNC5 proteins interact directly, but this interaction is repressed in the context of the full-length proteins. We provide evidence that netrin-1 triggers the formation of a receptor complex of DCC and UNC5 proteins and simultaneously derepresses the interaction between their cytoplasmic domains, thereby converting DCC-mediated attraction to UNC5/DCC-mediated repulsion.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          SMART, a simple modular architecture research tool: identification of signaling domains.

          Accurate multiple alignments of 86 domains that occur in signaling proteins have been constructed and used to provide a Web-based tool (SMART: simple modular architecture research tool) that allows rapid identification and annotation of signaling domain sequences. The majority of signaling proteins are multidomain in character with a considerable variety of domain combinations known. Comparison with established databases showed that 25% of our domain set could not be deduced from SwissProt and 41% could not be annotated by Pfam. SMART is able to determine the modular architectures of single sequences or genomes; application to the entire yeast genome revealed that at least 6.7% of its genes contain one or more signaling domains, approximately 350 greater than previously annotated. The process of constructing SMART predicted (i) novel domain homologues in unexpected locations such as band 4.1-homologous domains in focal adhesion kinases; (ii) previously unknown domain families, including a citron-homology domain; (iii) putative functions of domain families after identification of additional family members, for example, a ubiquitin-binding role for ubiquitin-associated domains (UBA); (iv) cellular roles for proteins, such predicted DEATH domains in netrin receptors further implicating these molecules in axonal guidance; (v) signaling domains in known disease genes such as SPRY domains in both marenostrin/pyrin and Midline 1; (vi) domains in unexpected phylogenetic contexts such as diacylglycerol kinase homologues in yeast and bacteria; and (vii) likely protein misclassifications exemplified by a predicted pleckstrin homology domain in a Candida albicans protein, previously described as an integrin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian Ras interacts directly with the serine/threonine kinase Raf.

            We have identified proteins that interact with H-Ras using a two hybrid system screen of a mouse cDNA library. Approximately 50% of the clones identified encoded portions of the c-Raf and A-Raf serine/threonine kinases. Overlaps among these clones define a conserved 81 residue region of the N-terminus of Raf as the Ras interaction region. We show that Raf interacts with wild-type and activated Ras, but not with an effector domain mutant of Ras or with a dominant-interfering Ras mutant. Using purified bacterially expressed fusion proteins, we show, furthermore, that Ras and the N-terminal region of Raf associate directly in vitro and that this interaction is dependent on GTP bound to Ras.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene.

              The DCC (Deleted in colorectal cancer) gene was first identified as a candidate for a tumour-suppressor gene on human chromosome 18q. More recently, in vitro studies in rodents have provided evidence that DCC might function as a receptor for the axonal chemoattractant netrin-1. Inactivation of the murine Dcc gene caused defects in axonal projections that are similar to those observed in netrin-1-deficient mice but did not affect growth, differentiation, morphogenesis or tumorigenesis in mouse intestine. These observations fail to support a tumour-suppressor function for Dcc, but are consistent with the hypothesis that DCC is a component of a receptor for netrin-1.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                June 1999
                June 1999
                : 97
                : 7
                : 927-941
                Article
                10.1016/S0092-8674(00)80804-1
                10399920
                bdb15021-a906-4bf9-8160-10d6348c6857
                © 1999

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article