9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stolbur phytoplasma transmission to maize by Reptalus panzeri and the disease cycle of maize redness in Serbia.

      Cytopathology
      Animals, Hemiptera, microbiology, Phytoplasma, isolation & purification, Plant Diseases, Serbia, Zea mays

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maize redness (MR), induced by stolbur phytoplasma ('Candidatus Phytoplasma solani', subgroup 16SrXII-A), is characterized by midrib, leaf, and stalk reddening and abnormal ear development. MR has been reported from Serbia, Romania, and Bulgaria for 50 years, and recent epiphytotics reduced yields by 40 to 90% in South Banat District, Serbia. Potential vectors including leafhoppers and planthoppers in the order Hemiptera, suborder Auchenorrhyncha, were surveyed in MR-affected and low-MR-incidence fields, and 33 different species were identified. Only Reptalus panzeri populations displayed characteristics of a major MR vector. More R. panzeri individuals were present in MR-affected versus low-MR fields, higher populations were observed in maize plots than in field border areas, and peak population levels preceded the appearance of MR in late July. Stolbur phytoplasma was detected in 17% of R. panzeri adults using nested polymerase chain reaction but not in any other insects tested. Higher populations of R. panzeri nymphs were found on maize, Johnsongrass (Sorghum halepense), and wheat (Triticum aestivum) roots. Stolbur phytoplasma was detected in roots of these three plant species, as well as in R. panzeri L(3) and L(5) nymphs. When stolbur phytoplasma-infected R. panzeri L(3) nymphs were introduced into insect-free mesh cages containing healthy maize and wheat plants, 89 and 7%, respectively, became infected. These results suggest that the MR disease cycle in South Banat involves mid-July transmission of stolbur phytoplasma to maize by infected adult R. panzeri. The adult R. panzeri lay eggs on infected maize roots, and nymphs living on these roots acquire the phytoplasma from infected maize. The nymphs overwinter on the roots of wheat planted into maize fields in the autumn, allowing emergence of phytoplasma-infected vectors the following July.

          Related collections

          Author and article information

          Journal
          19671007
          10.1094/PHYTO-99-9-1053

          Chemistry
          Animals,Hemiptera,microbiology,Phytoplasma,isolation & purification,Plant Diseases,Serbia,Zea mays
          Chemistry
          Animals, Hemiptera, microbiology, Phytoplasma, isolation & purification, Plant Diseases, Serbia, Zea mays

          Comments

          Comment on this article