2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments.

      1 , , ,
      Biofabrication
      IOP Publishing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study reports the development of biological/synthetic scaffolds for bone tissue engineering (TE) via 3D bioplotting. These scaffolds were composed of poly(L-lactic-co-glycolic acid) (PLGA), type I collagen, and nano-hydroxyapatite (nHA) in an attempt to mimic the extracellular matrix of bone. The solvent used for processing the scaffolds was 1,1,1,3,3,3-hexafluoro-2-propanol. The produced scaffolds were characterized by scanning electron microscopy, microcomputed tomography, thermogravimetric analysis, and unconfined compression test. This study also sought to validate the use of finite-element optimization in COMSOL Multiphysics for scaffold design. Scaffold topology was simplified to three factors: nHA content, strand diameter, and strand spacing. These factors affect the ability of the scaffold to bear mechanical loads and how porous the structure can be. Twenty four scaffolds were constructed according to an I-optimal, split-plot designed experiment (DE) in order to generate experimental models of the factor-response relationships. Within the design region, the DE and COMSOL models agreed in their recommended optimal nHA (30%) and strand diameter (460 μm). However, the two methods disagreed by more than 30% in strand spacing (908 μm for DE; 601 μm for COMSOL). Seven scaffolds were 3D-bioplotted to validate the predictions of DE and COMSOL models (4.5-9.9 MPa measured moduli). The predictions for these scaffolds showed relative agreement for scaffold porosity (mean absolute percentage error of 4% for DE and 13% for COMSOL), but were substantially poorer for scaffold modulus (51% for DE; 21% for COMSOL), partly due to some simplifying assumptions made by the models. Expanding the design region in future experiments (e.g., higher nHA content and strand diameter), developing an efficient solvent evaporation method, and exerting a greater control over layer overlap could allow developing PLGA-nHA-collagen scaffolds to meet the mechanical requirements for bone TE.

          Related collections

          Author and article information

          Journal
          Biofabrication
          Biofabrication
          IOP Publishing
          1758-5090
          1758-5082
          Feb 21 2017
          : 9
          : 1
          Affiliations
          [1 ] Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA.
          Article
          10.1088/1758-5090/9/1/015023
          28222045
          bdbf9fc4-2530-4569-8ad5-a59f5b80eea1
          History

          Comments

          Comment on this article