21
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cilia and Mucociliary Clearance

      ,
      Cold Spring Harbor Perspectives in Biology
      Cold Spring Harbor Laboratory

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mucociliary clearance (MCC) is the primary innate defense mechanism of the lung. The functional components are the protective mucous layer, the airway surface liquid layer, and the cilia on the surface of ciliated cells. The cilia are specialized organelles that beat in metachronal waves to propel pathogens and inhaled particles trapped in the mucous layer out of the airways. In health this clearance mechanism is effective, but in patients with primary cilia dyskinesia (PCD) the cilia are abnormal, resulting in deficient MCC and chronic lung disease. This demonstrates the critical importance of the cilia for human health. In this review, we summarize the current knowledge of the components of the MCC apparatus, focusing on the role of cilia in MCC.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Basal cells as stem cells of the mouse trachea and human airway epithelium.

          The pseudostratified epithelium of the mouse trachea and human airways contains a population of basal cells expressing Trp-63 (p63) and cytokeratins 5 (Krt5) and Krt14. Using a KRT5-CreER(T2) transgenic mouse line for lineage tracing, we show that basal cells generate differentiated cells during postnatal growth and in the adult during both steady state and epithelial repair. We have fractionated mouse basal cells by FACS and identified 627 genes preferentially expressed in a basal subpopulation vs. non-BCs. Analysis reveals potential mechanisms regulating basal cells and allows comparison with other epithelial stem cells. To study basal cell behaviors, we describe a simple in vitro clonal sphere-forming assay in which mouse basal cells self-renew and generate luminal cells, including differentiated ciliated cells, in the absence of stroma. The transcriptional profile identified 2 cell-surface markers, ITGA6 and NGFR, which can be used in combination to purify human lung basal cells by FACS. Like those from the mouse trachea, human airway basal cells both self-renew and generate luminal daughters in the sphere-forming assay.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Respiratory tract mucin genes and mucin glycoproteins in health and disease.

            This review focuses on the role and regulation of mucin glycoproteins (mucins) in airway health and disease. Mucins are highly glycosylated macromolecules (> or =50% carbohydrate, wt/wt). MUC protein backbones are characterized by numerous tandem repeats that contain proline and are high in serine and/or threonine residues, the sites of O-glycosylation. Secretory and membrane-tethered mucins contribute to mucociliary defense, an innate immune defense system that protects the airways against pathogens and environmental toxins. Inflammatory/immune response mediators and the overproduction of mucus characterize chronic airway diseases: asthma, chronic obstructive pulmonary diseases (COPD), or cystic fibrosis (CF). Specific inflammatory/immune response mediators can activate mucin gene regulation and airway remodeling, including goblet cell hyperplasia (GCH). These processes sustain airway mucin overproduction and contribute to airway obstruction by mucus and therefore to the high morbidity and mortality associated with these diseases. Importantly, mucin overproduction and GCH, although linked, are not synonymous and may follow from different signaling and gene regulatory pathways. In section i, structure, expression, and localization of the 18 human MUC genes and MUC gene products having tandem repeat domains and the specificity and application of MUC-specific antibodies that identify mucin gene products in airway tissues, cells, and secretions are overviewed. Mucin overproduction in chronic airway diseases and secretory cell metaplasia in animal model systems are reviewed in section ii and addressed in disease-specific subsections on asthma, COPD, and CF. Information on regulation of mucin genes by inflammatory/immune response mediators is summarized in section iii. In section iv, deficiencies in understanding the functional roles of mucins at the molecular level are identified as areas for further investigations that will impact on airway health and disease. The underlying premise is that understanding the pathways and processes that lead to mucus overproduction in specific airway diseases will allow circumvention or amelioration of these processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Motile cilia of human airway epithelia are chemosensory.

              Cilia are microscopic projections that extend from eukaryotic cells. There are two general types of cilia; primary cilia serve as sensory organelles, whereas motile cilia exert mechanical force. The motile cilia emerging from human airway epithelial cells propel harmful inhaled material out of the lung. We found that these cells express sensory bitter taste receptors, which localized on motile cilia. Bitter compounds increased the intracellular calcium ion concentration and stimulated ciliary beat frequency. Thus, airway epithelia contain a cell-autonomous system in which motile cilia both sense noxious substances entering airways and initiate a defensive mechanical mechanism to eliminate the offending compound. Hence, like primary cilia, classical motile cilia also contain sensors to detect the external environment.
                Bookmark

                Author and article information

                Journal
                Cold Spring Harbor Perspectives in Biology
                Cold Spring Harb Perspect Biol
                Cold Spring Harbor Laboratory
                1943-0264
                April 03 2017
                April 2017
                November 18 2016
                : 9
                : 4
                : a028241
                Article
                10.1101/cshperspect.a028241
                5378048
                27864314
                bdc05a02-0db8-410e-a871-96bb2c7a29f4
                © 2016
                History

                Comments

                Comment on this article