110
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure of the TRPA1 ion channel suggests regulatory mechanisms

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The TRPA1 ion channel (a.k.a the ‘wasabi receptor’) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here, we use single-particle electron cryo-microscopy to determine the structure of full-length human TRPA1 to ~4Å resolution in the presence of pharmacophores, including a potent antagonist. A number of unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted TRP-like allosteric domain. These findings provide novel insights into mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.

          Related collections

          Most cited references 48

          • Record: found
          • Abstract: found
          • Article: not found

          Structure of the TRPV1 ion channel determined by electron cryo-microscopy

          Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here, we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane helices S5–S6 and the intervening pore loop, which is flanked by S1–S4 voltage sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including N-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.

            TRPA1 is an excitatory ion channel targeted by pungent irritants from mustard and garlic. TRPA1 has been proposed to function in diverse sensory processes, including thermal (cold) nociception, hearing, and inflammatory pain. Using TRPA1-deficient mice, we now show that this channel is the sole target through which mustard oil and garlic activate primary afferent nociceptors to produce inflammatory pain. TRPA1 is also targeted by environmental irritants, such as acrolein, that account for toxic and inflammatory actions of tear gas, vehicle exhaust, and metabolic byproducts of chemotherapeutic agents. TRPA1-deficient mice display normal cold sensitivity and unimpaired auditory function, suggesting that this channel is not required for the initial detection of noxious cold or sound. However, TRPA1-deficient mice exhibit pronounced deficits in bradykinin-evoked nociceptor excitation and pain hypersensitivity. Thus, TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRPV1 structures in distinct conformations reveal mechanisms of activation

              TRP channels are polymodal signal detectors that respond to a wide range of physical and chemical stimuli. Elucidating how these channels integrate and convert physiological signals into channel opening is essential to understanding how they regulate cell excitability under normal and pathophysiological conditions. Here we exploit pharmacological probes (a peptide toxin and small vanilloid agonists) to determine structures of two activated states of the capsaicin receptor, TRPV1. A domain (S1-S4) that moves during activation of voltage-gated channels remains stationary in TRPV1, highlighting differences in gating mechanisms for these structurally related channel superfamilies. TRPV1 opening is associated with major structural rearrangements in the outer pore, including the pore helix and selectivity filter, as well as pronounced dilation of a hydrophobic constriction at the lower gate, suggesting a dual gating mechanism. Allosteric coupling between upper and lower gates may account for rich physiologic modulation exhibited by TRPV1 and other TRP channels.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                9 March 2015
                08 April 2015
                23 April 2015
                23 October 2015
                : 520
                : 7548
                : 511-517
                Affiliations
                [1 ]Department of Physiology, University of California, San Francisco, California 94158-2517, USA
                [2 ]Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA
                Author notes
                [§ ]Correspondence and requests for materials should be addressed to D.J. ( david.julius@ 123456ucsf.edu ) or Y.C. ( ycheng@ 123456ucsf.edu )
                [*]

                These authors contributed equally to this work

                Article
                NIHMS669776
                10.1038/nature14367
                4409540
                25855297

                Reprints and permissions information is available at www.nature.com/reprints.

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article