56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism

      ,
      Nature Reviews Cancer
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The altered metabolic programme of cancer cells facilitates their cell-autonomous proliferation and survival. In normal cells, signal transduction pathways control core cellular functions, including metabolism, to couple the signals from exogenous growth factors, cytokines or hormones to adaptive changes in cell physiology. The ubiquitous, growth factor-regulated phosphoinositide 3-kinase (PI3K)-AKT signalling network has diverse downstream effects on cellular metabolism, through either direct regulation of nutrient transporters and metabolic enzymes or the control of transcription factors that regulate the expression of key components of metabolic pathways. Aberrant activation of this signalling network is one of the most frequent events in human cancer and serves to disconnect the control of cell growth, survival and metabolism from exogenous growth stimuli. Here we discuss our current understanding of the molecular events controlling cellular metabolism downstream of PI3K and AKT and of how these events couple two major hallmarks of cancer: growth factor independence through oncogenic signalling and metabolic reprogramming to support cell survival and proliferation.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.

          Glycogen synthase kinase-3 (GSK3) is implicated in the regulation of several physiological processes, including the control of glycogen and protein synthesis by insulin, modulation of the transcription factors AP-1 and CREB, the specification of cell fate in Drosophila and dorsoventral patterning in Xenopus embryos. GSK3 is inhibited by serine phosphorylation in response to insulin or growth factors and in vitro by either MAP kinase-activated protein (MAPKAP) kinase-1 (also known as p90rsk) or p70 ribosomal S6 kinase (p70S6k). Here we show, however, that agents which prevent the activation of both MAPKAP kinase-1 and p70S6k by insulin in vivo do not block the phosphorylation and inhibition of GSK3. Another insulin-stimulated protein kinase inactivates GSK3 under these conditions, and we demonstrate that it is the product of the proto-oncogene protein kinase B (PKB, also known as Akt/RAC). Like the inhibition of GSK3 (refs 10, 14), the activation of PKB is prevented by inhibitors of phosphatidylinositol (PI) 3-kinase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Akt stimulates aerobic glycolysis in cancer cells.

            Cancer cells frequently display high rates of aerobic glycolysis in comparison to their nontransformed counterparts, although the molecular basis of this phenomenon remains poorly understood. Constitutive activity of the serine/threonine kinase Akt is a common perturbation observed in malignant cells. Surprisingly, although Akt activity is sufficient to promote leukemogenesis in nontransformed hematopoietic precursors and maintenance of Akt activity was required for rapid disease progression, the expression of activated Akt did not increase the proliferation of the premalignant or malignant cells in culture. However, Akt stimulated glucose consumption in transformed cells without affecting the rate of oxidative phosphorylation. High rates of aerobic glycolysis were also identified in human glioblastoma cells possessing but not those lacking constitutive Akt activity. Akt-expressing cells were more susceptible than control cells to death after glucose withdrawal. These data suggest that activation of the Akt oncogene is sufficient to stimulate the switch to aerobic glycolysis characteristic of cancer cells and that Akt activity renders cancer cells dependent on aerobic glycolysis for continued growth and survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MYC as a regulator of ribosome biogenesis and protein synthesis.

              MYC regulates the transcription of thousands of genes required to coordinate a range of cellular processes, including those essential for proliferation, growth, differentiation, apoptosis and self-renewal. Recently, MYC has also been shown to serve as a direct regulator of ribosome biogenesis. MYC coordinates protein synthesis through the transcriptional control of RNA and protein components of ribosomes, and of gene products required for the processing of ribosomal RNA, the nuclear export of ribosomal subunits and the initiation of mRNA translation. We discuss how the modulation of ribosome biogenesis by MYC may be essential to its physiological functions as well as its pathological role in tumorigenesis.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Cancer
                Nat Rev Cancer
                Springer Science and Business Media LLC
                1474-175X
                1474-1768
                November 4 2019
                Article
                10.1038/s41568-019-0216-7
                7314312
                31686003
                bdc4af89-df67-4b5b-a27d-23e215dbb7f8
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article