38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inferring Species Trees from Gene Trees in a Radiation of California Trapdoor Spiders (Araneae, Antrodiaetidae, Aliatypus)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The California Floristic Province is a biodiversity hotspot, reflecting a complex geologic history, strong selective gradients, and a heterogeneous landscape. These factors have led to high endemic diversity across many lifeforms within this region, including the richest diversity of mygalomorph spiders (tarantulas, trapdoor spiders, and kin) in North America. The trapdoor spider genus Aliatypus encompasses twelve described species, eleven of which are endemic to California. Several Aliatypus species show disjunct distributional patterns in California (some are found on both sides of the vast Central Valley), and the genus as a whole occupies an impressive variety of habitats.

          Methodology/Principal Findings

          We collected specimens from 89 populations representing all described species. DNA sequence data were collected from seven gene regions, including two newly developed for spider systematics. Bayesian inference (in individual gene tree and species tree approaches) recovered a general “3 clade” structure for the genus ( A. gulosus, californicus group, erebus group), with three other phylogenetically isolated species differing slightly in position across different phylogenetic analyses. Because of extremely high intraspecific divergences in mitochondrial COI sequences, the relatively slowly evolving 28S rRNA gene was found to be more useful than mitochondrial data for identification of morphologically indistinguishable immatures. For multiple species spanning the Central Valley, explicit hypothesis testing suggests a lack of monophyly for regional populations (e.g., western Coast Range populations). Phylogenetic evidence clearly shows that syntopy is restricted to distant phylogenetic relatives, consistent with ecological niche conservatism.

          Conclusions/Significance

          This study provides fundamental insight into a radiation of trapdoor spiders found in the biodiversity hotspot of California. Species relationships are clarified and undescribed lineages are discovered, with more geographic sampling likely to lead to additional species diversity. These dispersal-limited taxa provide novel insight into the biogeography and Earth history processes of California.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          MRBAYES: Bayesian inference of phylogenetic trees.

          The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Gene Trees in Species Trees

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bayesian species delimitation using multilocus sequence data.

              In the absence of recent admixture between species, bipartitions of individuals in gene trees that are shared across loci can potentially be used to infer the presence of two or more species. This approach to species delimitation via molecular sequence data has been constrained by the fact that genealogies for individual loci are often poorly resolved and that ancestral lineage sorting, hybridization, and other population genetic processes can lead to discordant gene trees. Here we use a Bayesian modeling approach to generate the posterior probabilities of species assignments taking account of uncertainties due to unknown gene trees and the ancestral coalescent process. For tractability, we rely on a user-specified guide tree to avoid integrating over all possible species delimitations. The statistical performance of the method is examined using simulations, and the method is illustrated by analyzing sequence data from rotifers, fence lizards, and human populations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                26 September 2011
                : 6
                : 9
                : e25355
                Affiliations
                [1 ]Department of Biology, San Diego State University, San Diego, California, United States of America
                [2 ]Department of Biology, University of California Riverside, Riverside, California, United States of America
                Montreal Botanical Garden, Canada
                Author notes

                Conceived and designed the experiments: JDS MH CYH JS. Performed the experiments: JDS MH CYH JS. Analyzed the data: JDS JS. Contributed reagents/materials/analysis tools: JDS MH CYH JS. Wrote the paper: JDS MH CYH JS.

                [¤]

                Current address: Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America

                Article
                PONE-D-11-06334
                10.1371/journal.pone.0025355
                3180454
                21966507
                bdc666a9-e0d5-449d-98c5-a0d3dc5667ab
                Satler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 April 2011
                : 1 September 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Ecology
                Ecological Metrics
                Species Diversity
                Biogeography
                Evolutionary Biology
                Evolutionary Systematics
                Organismal Evolution

                Uncategorized
                Uncategorized

                Comments

                Comment on this article