18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tryptamine Attenuates Experimental Multiple Sclerosis Through Activation of Aryl Hydrocarbon Receptor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tryptamine is a naturally occurring monoamine alkaloid which has been shown to act as an aryl hydrocarbon receptor (AHR) agonist. It is produced in large quantities from the catabolism of the essential amino acid tryptophan by commensal microorganisms within the gastrointestinal (GI) tract of homeothermic organisms. Previous studies have established microbiota derived AHR ligands as potent regulators of neuroinflammation, further defining the role the gut-brain axis plays in the complex etiology in multiple sclerosis (MS) progression. In the current study, we tested the ability of tryptamine to ameliorate symptoms of experimental autoimmune encephalomyelitis (EAE), a murine model of MS. We found that tryptamine administration attenuated clinical signs of paralysis in EAE mice, decreased the number of infiltrating CD4 + T cells in the CNS, Th17 cells, and RORγ T cells while increasing FoxP3+Tregs. To test if tryptamine acts through AHR, myelin oligodendrocyte glycoprotein (MOG)-sensitized T cells from wild-type or Lck-Cre AHR flox/flox mice that lacked AHR expression in T cells, and cultured with tryptamine, were transferred into wild-type mice to induce passive EAE. It was noted that in these experiments, while cells from wild-type mice treated with tryptamine caused marked decrease in paralysis and attenuated neuroinflammation in passive EAE, similar cells from Lck-Cre AHR flox/flox mice treated with tryptamine, induced significant paralysis symptoms and heightened neuroinflammation. Tryptamine treatment also caused alterations in the gut microbiota and promoted butyrate production. Together, the current study demonstrates for the first time that tryptamine administration attenuates EAE by activating AHR and suppressing neuroinflammation.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Metagenomic biomarker discovery and explanation

          This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities, which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.harvard.edu/lefse/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.

            Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4(+) CD45RB(hi) T cells in Rag1(-/-) mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host-microbe interactions establish immunological homeostasis in the gut.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A simple practice guide for dose conversion between animals and human

              Understanding the concept of extrapolation of dose between species is important for pharmaceutical researchers when initiating new animal or human experiments. Interspecies allometric scaling for dose conversion from animal to human studies is one of the most controversial areas in clinical pharmacology. Allometric approach considers the differences in body surface area, which is associated with animal weight while extrapolating the doses of therapeutic agents among the species. This review provides basic information about translation of doses between species and estimation of starting dose for clinical trials using allometric scaling. The method of calculation of injection volume for parenteral formulation based on human equivalent dose is also briefed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                25 January 2021
                2020
                : 11
                : 619265
                Affiliations
                [ 1 ]Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
                [ 2 ]Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
                Author notes

                Edited by: Stefania Tacconelli, University of Studies G. d’Annunzio Chieti and Pescara, Italy

                Reviewed by: Stefania Ceruti, University of Milan, Italy

                Alexey Victorovich Sokolov, Institute of Experimental Medicine (RAS), Russia

                *Correspondence: Mitzi Nagarkatti, mitzi.nagarkatti@ 123456uscmed.sc.edu

                This article was submitted to Inflammation Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                619265
                10.3389/fphar.2020.619265
                7868334
                33569008
                bdce4aca-cf95-483e-8d51-1d9c774d5f8d
                Copyright © 2021 Dopkins, Becker, Miranda, Walla, Nagarkatti and Nagarkatti.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 October 2020
                : 15 December 2020
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: P01AT003961 P20GM103641 R01ES030144 R01AI129788 R01AI123947
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                neuroinflammation,tryptamine,experimental autoimmune encephalitis,aryl hydrocarbon receptor,autoimmunity

                Comments

                Comment on this article