26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proliferation and odontogenic differentiation of BMP2 gene-transfected stem cells from human tooth apical papilla: An in vitro study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stem cells from the apical papilla (SCAP) have odontogenic potential, which plays a pivotal role in the root dentin development of permanent teeth. Human bone morphogenetic protein 2 ( BMP2) is a well-known gene that participates in regulating the odontogenic differentiation of dental tissue-derived stem cells. However, little is known regarding the effects of the BMP2 gene on the proliferation and odontogenic differentiation of SCAP. This study aimed to evaluate the odontogenic differentiation potential of lentiviral-mediated BMP2 gene-transfected human SCAP (SCAP/BMP2) in vitro. SCAP were isolated by enzymatic dissociation of human teeth apical papillae. The multipotential of SCAP was verified by their osteogenic and adipogenic differentiation characteristics. The phenotype of SCAP was evaluated by flow cytometry (FCM). The proliferation status of the blank vector-transfected SCAP (SCAP/Vector) and SCAP/BMP2 was analyzed by a cell counting kit-8 (CCK-8). Odontogenic genes, including alkaline phosphatase (ALP), osteocalcin (OCN), dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) of the two groups of cells were evaluated by quantitative polymerase chain reaction (qPCR). ALP staining and alizarin red (AR) staining of the cells was performed on the 16th day after transfection. In vitro results of CCK-8, qPCR, ALP and AR staining demonstrated that: i) SCAP/BMP2 had a comparable proliferation rate to SCAP/Vector; ii) SCAP/BMP2 presented significantly better potential to differentiate into odontoblasts compared to SCAP/Vector by upregulating ALP, OCN, DSPP and DMP1 genes; iii) more ALP granules and mineralized deposits were formed by SCAP/BMP2 as compared to SCAP/Vector. The results suggested that lentiviral-mediated BMP2 gene transfection enhances the odontogenic differentiation capacity of human SCAP in vitro.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine.

          To date, 5 different human dental stem/progenitor cells have been isolated and characterized: dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), stem cells from apical papilla (SCAP), and dental follicle progenitor cells (DFPCs). These postnatal populations have mesenchymal-stem-cell-like (MSC) qualities, including the capacity for self-renewal and multilineage differentiation potential. MSCs derived from bone marrow (BMMSCs) are capable of giving rise to various lineages of cells, such as osteogenic, chondrogenic, adipogenic, myogenic, and neurogenic cells. The dental-tissue-derived stem cells are isolated from specialized tissue with potent capacities to differentiate into odontogenic cells. However, they also have the ability to give rise to other cell lineages similar to, but different in potency from, that of BMMSCs. This article will review the isolation and characterization of the properties of different dental MSC-like populations in comparison with those of other MSCs, such as BMMSCs. Important issues in stem cell biology, such as stem cell niche, homing, and immunoregulation, will also be discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study.

            Mesenchymal stem cells (MSCs) have been isolated from the pulp tissue of permanent teeth (dental pulp stem cells or DPSCs) and deciduous teeth (stem cells from human exfoliated deciduous teeth). We recently discovered another type of MSCs in the apical papilla of human immature permanent teeth termed stem cells from the apical papilla (SCAP). Here, we further characterized the apical papilla tissue and stem cell properties of SCAP using histologic, immunohistochemical, and immunocytofluorescent analyses. We found that the apical papilla is distinctive to the pulp in terms of containing less cellular and vascular components than those in the pulp. Cells in the apical papilla proliferated 2- to 3-fold greater than those in the pulp in organ cultures. Both SCAP and DPSCs were as potent in osteo/dentinogenic differentiation as MSCs from bone marrows, whereas they were weaker in adipogenic potential. The immunophenotype of SCAP is similar to that of DPSCs on the osteo/dentinogenic and growth factor receptor gene profiles. Double-staining experiments showed that STRO-1 coexpressed with dentinogenic markers such as bone sialophosphoprotein, osteocalcin, and growth factors FGFR1 and TGFbetaRI in cultured SCAP. Additionally, SCAP express a wide variety of neurogenic markers such as nestin and neurofilament M upon stimulation with a neurogenic medium. We conclude that SCAP are similar to DPSCs but a distinct source of potent dental stem/progenitor cells. Their implications in root development and apexogenesis are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors.

              Over the past decade, lentiviral vectors have emerged as powerful tools for transgene delivery. The use of lentiviral vectors has become commonplace and applications in the fields of neuroscience, hematology, developmental biology, stem cell biology and transgenesis are rapidly emerging. Also, lentiviral vectors are at present being explored in the context of human clinical trials. Here we describe improved protocols to generate highly concentrated lentiviral vector pseudotypes involving different envelope glycoproteins. In this protocol, vector stocks are prepared by transient transfection using standard cell culture media or serum-free media. Such stocks are then concentrated by ultracentrifugation and/or ion exchange chromatography, or by precipitation using polyethylene glycol 6000, resulting in vector titers of up to 10(10) transducing units per milliliter and above. We also provide reliable real-time PCR protocols to titrate lentiviral vectors based on proviral DNA copies present in genomic DNA extracted from transduced cells or on vector RNA. These production/concentration methods result in high-titer vector preparations that show reduced toxicity compared with lentiviral vectors produced using standard protocols involving ultracentrifugation-based methods. The vector production and titration protocol described here can be completed within 8 d.
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                October 2014
                24 July 2014
                24 July 2014
                : 34
                : 4
                : 1004-1012
                Affiliations
                Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, P.R. China
                Author notes
                Correspondence to: Professor Junqi Ling, Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510080, P.R. China, E-mail: lingjq@ 123456mail.sysu.edu.cn
                [*]

                Contributed equally

                Article
                ijmm-34-04-1004
                10.3892/ijmm.2014.1862
                4152145
                25070743
                bdd38079-ace0-4c26-a17b-f03cbfb4f502
                Copyright © 2014, Spandidos Publications

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 03 February 2014
                : 09 July 2014
                Categories
                Articles

                stem cells from apical papilla,bone morphogenetic protein 2,gene transfection,proliferation,odontogenic differentiation

                Comments

                Comment on this article