41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei

      , , ,
      The Astrophysical Journal
      American Astronomical Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Observation of Gravitational Waves from a Binary Black Hole Merger

          On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of \(1.0 \times 10^{-21}\). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of \(410^{+160}_{-180}\) Mpc corresponding to a redshift \(z = 0.09^{+0.03}_{-0.04}\). In the source frame, the initial black hole masses are \(36^{+5}_{-4} M_\odot\) and \(29^{+4}_{-4} M_\odot\), and the final black hole mass is \(62^{+4}_{-4} M_\odot\), with \(3.0^{+0.5}_{-0.5} M_\odot c^2\) radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Formation of massive black holes through runaway collisions in dense young star clusters.

            A luminous X-ray source is associated with MGG 11--a cluster of young stars approximately 200 pc from the centre of the starburst galaxy M 82 (refs 1, 2). The properties of this source are best explained by invoking a black hole with a mass of at least 350 solar masses (350 M(o)), which is intermediate between stellar-mass and supermassive black holes. A nearby but somewhat more massive cluster (MGG 9) shows no evidence of such an intermediate-mass black hole, raising the issue of just what physical characteristics of the clusters can account for this difference. Here we report numerical simulations of the evolution and motion of stars within the clusters, where stars are allowed to merge with each other. We find that for MGG 11 dynamical friction leads to the massive stars sinking rapidly to the centre of the cluster, where they participate in a runaway collision. This produces a star of 800-3,000 M(o) which ultimately collapses to a black hole of intermediate mass. No such runaway occurs in the cluster MGG 9, because the larger cluster radius leads to a mass segregation timescale a factor of five longer than for MGG 11.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              On the variation of the Initial Mass Function

              (shortened) In this contribution an average or Galactic-field IMF is defined, stressing that there is evidence for a change in the power-law index at only two masses: near 0.5 Msun and 0.08 Msun. Using this supposed universal IMF, the uncertainty inherent to any observational estimate of the IMF is investigated, by studying the scatter introduced by Poisson noise and the dynamical evolution of star clusters. It is found that this apparent scatter reproduces quite well the observed scatter in power-law index determinations, thus defining the fundamental limit within which any true variation becomes undetectable. Determinations of the power-law indices alpha are subject to systematic errors arising mostly from unresolved binaries. The systematic bias is quantified here, with the result that the single-star IMFs for young star-clusters are systematically steeper by d_alpha=0.5 between 0.1 and 1 Msun than the Galactic-field IMF, which is populated by, on average, about 5 Gyr old stars. The MFs in globular clusters appear to be, on average, systematically flatter than the Galactic-field IMF, and the recent detection of ancient white-dwarf candidates in the Galactic halo and absence of associated low-mass stars suggests a radically different IMF for this ancient population. Star-formation in higher-metallicity environments thus appears to produce relatively more low-mass stars.
                Bookmark

                Author and article information

                Journal
                The Astrophysical Journal
                ApJ
                American Astronomical Society
                1538-4357
                February 01 2017
                January 27 2017
                : 835
                : 2
                : 165
                Article
                10.3847/1538-4357/835/2/165
                bde57bbc-38db-45a6-bd4e-ce61dc9ff029
                © 2017

                http://iopscience.iop.org/info/page/text-and-data-mining

                History

                Comments

                Comment on this article