28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators.

      1 , ,
      Annual review of microbiology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The importance of accurate demographic information is reflected in the United States Constitution, Article 1, which provides for a decennial census of this country's human population. Bacteria also conduct a census of their population and do so more frequently, more efficiently, and as far we know, with little if any of the political contentiousness caused by human demographers. Many examples have been found of particular bacterial genes, operons, or regulons that are expressed preferentially at high cell densities. Many of these are regulated by proteins related to the LuxR and LuxI proteins of Vibrio fischeri, and by a diffusible pheromone called an autoinducer. LuxR and LuxI and their cognate autoinducer (3-oxohexanoyl homoserine lactone, designated VAI-1) provide an important model to describe the functions of this family of proteins. LuxR is a VAI-1 receptor and a VAI-1-dependent transcriptional activator, and LuxI directs the synthesis of VAI-1. VAI-1 diffuses across the bacterial envelope, and intracellular concentrations of it are therefore strongly increased by nearby VAI-1-producing bacteria. Similar systems regulate pathogenesis factors in Pseudomonas aeruginosa and Erwinia spp., as well as T1 plasmid conjugal transfer in Agrobacterium tumefaciens, and many other genes in numerous genera of gram-negative bacteria. Genetic analyses of these systems have revealed a high degree of functional conservation, while also uncovering features that are unique to each.

          Related collections

          Author and article information

          Journal
          Annu Rev Microbiol
          Annual review of microbiology
          Annual Reviews
          0066-4227
          0066-4227
          1996
          : 50
          Affiliations
          [1 ] Department of Biology, Trinity University, San Antonio, Texas 78212, USA.
          Article
          10.1146/annurev.micro.50.1.727
          8905097
          bde78b3c-c466-4c4a-953a-dda10fda68ff
          History

          Comments

          Comment on this article