+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Phase II single-arm trial of palonosetron for the prevention of acute and delayed chemotherapy-induced nausea and vomiting in malignant glioma patients receiving multidose irinotecan in combination with bevacizumab

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Given that the prognosis of recurrent malignant glioma (MG) remains poor, improving quality of life (QoL) through symptom management is important. Meta-analyses establishing antiemetic guidelines have demonstrated the superiority of palonosetron (PAL) over older 5-hydroxytryptamine 3-receptor antagonists in chemotherapy-induced nausea and vomiting (CINV) prevention, but excluded patients with gliomas. Irinotecan plus bevacizumab is a treatment frequently used in MG, but is associated with low (55%) CINV complete response (CR; no emesis or use of rescue antiemetic) with commonly prescribed ondansetron. A single-arm Phase II trial was conducted in MG patients to determine the efficacy of intravenous PAL (0.25 mg) and dexamethasone (DEX; 10 mg) received in conjunction with biweekly irinotecan–bevacizumab treatment. The primary end point was the proportion of subjects achieving acute CINV CR (no emesis or antiemetic ≤24 hours postchemotherapy). Secondary end points included delayed CINV CR (days 2–5), overall CINV CR (days 1–5), and QoL, fatigue, and toxicity.

          Materials and methods

          A two-stage design of 160 patients was planned to differentiate between CINV CR of 55% and 65% after each dose of PAL–DEX. Validated surveys assessed fatigue and QoL.


          A total of 63 patients were enrolled, after which enrollment was terminated due to slow accrual; 52 patients were evaluable for the primary outcome of acute CINV CR. Following PAL–DEX dose administrations 1–3, acute CINV CR rates were 62%, 68%, and 70%; delayed CINV CR rates were 62%, 66%, and 70%, and overall CINV CR rates were 47%, 57%, and 62%, respectively. Compared to baseline, there was a clinically meaningful increase in fatigue during acute and overall phases, but not in the delayed phase. There were no grade ≥3 PAL–DEX treatment-related toxicities.


          Data suggest that PAL–DEX is effective in preventing CINV in MG patients, which ultimately maintains the QoL of patients with glioma.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: not found

          A multiple testing procedure for clinical trials.

          A multiple testing procedure is proposed for comparing two treatments when response to treatment is both dichotomous (i.e., success or failure) and immediate. The proposed test statistic for each test is the usual (Pearson) chi-square statistic based on all data collected to that point. The maximum number (N) of tests and the number (m1 + m2) of observations collected between successive tests is fixed in advance. The overall size of the procedure is shown to be controlled with virtually the same accuracy as the single sample chi-square test based on N(m1 + m2) observations. The power is also found to be virtually the same. However, by affording the opportunity to terminate early when one treatment performs markedly better than the other, the multiple testing procedure may eliminate the ethical dilemmas that often accompany clinical trials.
            • Record: found
            • Abstract: not found
            • Article: not found

            Chemotherapy-induced nausea and vomiting.

              • Record: found
              • Abstract: found
              • Article: not found

              Addition of the neurokinin 1 receptor antagonist aprepitant to standard antiemetic therapy improves control of chemotherapy-induced nausea and vomiting. Results from a randomized, double-blind, placebo-controlled trial in Latin America.

              Aprepitant is a novel neurokinin 1 (NK(1)) antagonist that has been shown to improve control of chemotherapy-induced nausea and vomiting (CINV) when added to a standard antiemetic regimen of a 5-hydroxytriptamine-3 antagonist plus a corticosteroid. The authors sought to evaluate further the efficacy and tolerability of aprepitant plus standard therapy in a large clinical trial. This was a multicenter, randomized, double-blind, placebo-controlled, parallel-groups, Phase III study. Patients with cancer who were scheduled to receive treatment with high-dose cisplatin chemotherapy were randomized to receive 1 of 2 treatment regimens; the standard therapy group received intravenous ondansetron 32 mg and oral dexamethasone 20 mg on Day 1, and oral dexamethasone 8 mg twice daily on Days 2-4. The aprepitant group received oral aprepitant 125 mg, intravenous ondansetron 32 mg, and oral dexamethasone 12 mg on Day 1; oral aprepitant 80 mg and oral dexamethasone 8 mg once daily on Days 2-3; and oral dexamethasone 8 mg on Day 4. Patients recorded episodes of emesis, use of rescue therapy, and severity of nausea in a diary. A modified intent-to-treat approach was used to analyze the efficacy data. The primary endpoint was complete response (no emesis and no rescue therapy) during the 5-day period postcisplatin. Treatment comparisons were made using logistic regression models, and reported adverse events and physical and laboratory assessments were used to assess tolerability. A total of 523 patients were evaluated for efficacy, and 568 patients were evaluated for safety. During the 5 days after chemotherapy, the percentages of patients who achieved a complete response were 62.7% in the aprepitant group (163 of 260 patients) versus 43.3% in the standard therapy group (114 of 263 patients; P < 0.001). For Day 1, the complete response rates were 82.8% for the aprepitant group and 68.4% for the standard therapy group (P < 0.001); for Days 2-5, the complete response rates were 67.7% in the aprepitant group and 46.8% in the standard therapy group (P < 0.001). The overall incidence of adverse events was similar between the 2 treatment groups (72.8% in the aprepitant group [206 of 283 patients] and 72.6% in the standard therapy group [207 of 285 patients]) as were rates of serious adverse events, discontinuations due to adverse events, and deaths. In patients with cancer who are receiving high-dose cisplatin-based chemotherapy, therapy consisting of aprepitant (125 mg on Day 1 and 80 mg on Days 2-3) plus a standard regimen of ondansetron and dexamethasone provided superior antiemetic protection compared with standard therapy alone and was generally well tolerated. Copyright 2003 American Cancer Society.

                Author and article information

                Ther Clin Risk Manag
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                23 December 2016
                : 13
                : 33-40
                [1 ]The Preston Robert Tisch Brain Tumor Center at Duke, South Hospital, Duke University Medical Center
                [2 ]Department of Neurosurgery, Duke University Health System
                [3 ]Duke University School of Nursing
                [4 ]Department of Neurology
                [5 ]Department of Biostatistics and Bioinformatics, Duke University Health System, Durham, NC
                [6 ]Saint Francis Cancer Center, Hartford, CT, USA
                Author notes
                Correspondence: Mary Lou Affronti, Preston Robert Tisch Brain Tumor Center at Duke, Room 047, Baker House, South Hospital, Trent Drive, Duke University Medical Center, Durham, NC 27710, USA, Tel +1 919 684 5301, Fax +1 919 681 1697, Email affro002@ 123456mc.duke.edu
                © 2017 Affronti et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research


                Comment on this article