10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inheritance of Rootstock Effects in Avocado ( Persea americana Mill.) cv. Hass

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Grafting is typically utilized to merge adapted seedling rootstocks with highly productive clonal scions. This process implies the interaction of multiple genomes to produce a unique tree phenotype. However, the interconnection of both genotypes obscures individual contributions to phenotypic variation (rootstock-mediated heritability), hampering tree breeding. Therefore, our goal was to quantify the inheritance of seedling rootstock effects on scion traits using avocado ( Persea americana Mill.) cv. Hass as a model fruit tree. We characterized 240 diverse rootstocks from 8 avocado cv. Hass orchards with similar management in three regions of the province of Antioquia, northwest Andes of Colombia, using 13 microsatellite markers simple sequence repeats (SSRs). Parallel to this, we recorded 20 phenotypic traits (including morphological, biomass/reproductive, and fruit yield and quality traits) in the scions for 3 years (2015–2017). Relatedness among rootstocks was inferred through the genetic markers and inputted in a “genetic prediction” model to calculate narrow-sense heritabilities ( h 2) on scion traits. We used three different randomization tests to highlight traits with consistently significant heritability estimates. This strategy allowed us to capture five traits with significant heritability values that ranged from 0.33 to 0.45 and model fits ( r) that oscillated between 0.58 and 0.73 across orchards. The results showed significance in the rootstock effects for four complex harvest and quality traits (i.e., total number of fruits, number of fruits with exportation quality, and number of fruits discarded because of low weight or thrips damage), whereas the only morphological trait that had a significant heritability value was overall trunk height (an emergent property of the rootstock–scion interaction). These findings suggest the inheritance of rootstock effects, beyond root phenotype, on a surprisingly wide spectrum of scion traits in “Hass” avocado. They also reinforce the utility of polymorphic SSRs for relatedness reconstruction and genetic prediction of complex traits. This research is, up to date, the most cohesive evidence of narrow-sense inheritance of rootstock effects in a tropical fruit tree crop. Ultimately, our work highlights the importance of considering the rootstock–scion interaction to broaden the genetic basis of fruit tree breeding programs while enhancing our understanding of the consequences of grafting.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: not found

          Detecting the number of clusters of individuals using the software structure: a simulation study

          The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species

            Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS) is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs). This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM) and barley (Oregon Wolfe Barley) recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hybridization and speciation.

              Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky-Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock-on effects on speciation both within and outside regions of hybridization. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                23 December 2020
                2020
                : 11
                : 555071
                Affiliations
                [1] 1Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI Tibaitatá , Mosquera, Colombia
                [2] 2Department of Microbiology and Immunology, Western University , London, ON, Canada
                [3] 3Department of Plant Pathology and Microbiology, Interdepartmental Bioinformatics and Computational Biology, Iowa State University , Ames, IA, United States
                [4] 4Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI La Selva , Rionegro, Colombia
                [5] 5Facultad de Ingenierías, Universidad Católica de Oriente—UCO , Rionegro, Antioquia
                Author notes

                Edited by: Francisco Perez-Alfocea, Spanish National Research Council, Spain

                Reviewed by: Bruno Mezzetti, Marche Polytechnic University, Italy; Maria Teresa Beryl Colinas León, Chapingo Autonomous University, Mexico; Pedro Martinez-Gomez, Spanish National Research Council, Spain

                *Correspondence: Andrés J. Cortés, acortes@ 123456agrosavia.co

                These authors share senior authorship

                This article was submitted to Crop and Product Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2020.555071
                7785968
                33424874
                bdf57df7-78cc-4a3f-bb44-b04bdcc5405d
                Copyright © 2020 Reyes-Herrera, Muñoz-Baena, Velásquez-Zapata, Patiño, Delgado-Paz, Díaz-Diez, Navas-Arboleda and Cortés.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 April 2020
                : 17 November 2020
                Page count
                Figures: 6, Tables: 1, Equations: 3, References: 166, Pages: 19, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                heritability,grafting,scion,fruit tree,rootstock-scion interaction,genetic prediction

                Comments

                Comment on this article