50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression of EGFR and Molecules Downstream to PI3K/Akt, Raf-1-MEK-1-MAP (Erk1/2), and JAK (STAT3) Pathways in Invasive Lung Adenocarcinomas Resected at a Single Institution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Therapies targeting EGFR are effective in treating tumors that harbor molecular alterations; however, there is heterogeneity in long-term response to these therapies. We retrospectively analyzed protein expression of EGFR, Stat3, phospho-Akt, and phospho-Erk1/2 by immunohistochemistry in a series of resected cases from a single institution, correlated with clinicopathological variables. There were 96 patients, with the majority of cases being of low stage tumors (17 pT1a, 23 pT1b, 30 pT2a, and 18 pT2b). Histologic subtypes were 45 acinar predominant, 2 cribriform, 25 solid, 7 papillary, 11 lepidic, and 4 mucinous tumors. The EGFR score was higher in tumors with vascular invasion ( P = 0.013), in solid and cribriform acinar histology, and in high stage tumors ( P = 0.006 and P = 0.01). EGFR was more likely overexpressed in solid compared to lepidic tumors ( P = 0.02). Acinar tumors had the highest rate of ERK1/2 positivity (19%). There was a strong correlation among positivity for ERCC1 and other markers, including STAT3 ( P = 0.003), Akt ( P = 0.02), and ERK1/ERK2 ( P = 0.0005). Expression of molecules downstream to EGFR varied from 12% to 31% of tumors; however, the expression did not directly correlate to EGFR expression, which may suggest activation of the cascades through different pathways. The correlation of protein expression and the new lung adenocarcinoma classification may help in the understanding of activated pathways of each tumor type, which may act in the oncogenesis and drug resistance of these tumors.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas.

          Persistently activated or tyrosine-phosphorylated STAT3 (pSTAT3) is found in 50% of lung adenocarcinomas. pSTAT3 is found in primary adenocarcinomas and cell lines harboring somatic-activating mutations in the tyrosine kinase domain of EGFR. Treatment of cell lines with either an EGFR inhibitor or an src kinase inhibitor had no effect on pSTAT3 levels, whereas a pan-JAK inhibitor (P6) blocked activation of STAT3 and inhibited tumorigenesis. Cell lines expressing these persistently activated mutant EGFRs also produced high IL-6 levels, and blockade of the IL-6/gp130/JAK pathway led to a decrease in pSTAT3 levels. In addition, reduction of IL-6 levels by RNA interference led to a decrease in tumorigenesis. Introduction of persistently activated EGFR into immortalized breast epithelial cells led to tumorigenesis, IL-6 expression, and STAT3 activation, all of which could be inhibited with P6 or gp130 blockade. Furthermore, inhibition of EGFR activity in multiple cell lines partially blocked transcription of IL-6 and concurrently decreased production and release of IL-6. Finally, immunohistochemical analysis revealed a positive correlation between pSTAT3 and IL-6 positivity in primary lung adenocarcinomas. Therefore, mutant EGFR could activate the gp130/JAK/STAT3 pathway by means of IL-6 upregulation in primary human lung adenocarcinomas, making this pathway a potential target for cancer treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival.

            Our aim was to analyze and validate the prognostic impact of the novel International Association for the Study of Lung Cancer (IASLC)/American Thoracic Society (ATS)/European Respiratory Society (ERS) proposal for an architectural classification of invasive pulmonary adenocarcinomas (ADCs) across all tumor stages. The architectural pattern of a large cohort of 500 patients with resected ADCs (stages I to IV) was retrospectively analyzed in 5% increments and classified according to their predominant architecture (lepidic, acinar, solid, papillary, or micropapillary), as proposed by the IASLC/ATS/ERS. Subsequently, histomorphologic data were correlated with clinical data, adjuvant therapy, and patient outcome. Overall survival differed significantly between lepidic (78.5 months), acinar (67.3 months), solid (58.1 months), papillary (48.9 months), and micropapillary (44.9 months) predominant ADCs (P = .007). When patterns were lumped into groups, this resulted in even more pronounced differences in survival (pattern group 1, 78.5 months; group 2, 67.3 months; group 3, 57.2 months; P = .001). Comparable differences were observed for overall, disease-specific, and disease-free survival. Pattern and pattern groups were stage- and therapy-independent prognosticators for all three survival parameters. Survival differences according to patterns were influenced by adjuvant chemoradiotherapy; in particular, solid-predominant tumors had an improved prognosis with adjuvant radiotherapy. The predominant pattern was tightly linked to the risk of developing nodal metastases (P < .001). Besides all recent molecular progress, architectural grading of pulmonary ADCs according to the novel IASLC/ATS/ERS scheme is a rapid, straightforward, and efficient discriminator for patient prognosis and may support patient stratification for adjuvant chemoradiotherapy. It should be part of an integrated clinical, morphologic, and molecular subtyping to further improve ADC treatment.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              EGFR testing in lung cancer is ready for prime time.

                Bookmark

                Author and article information

                Journal
                Anal Cell Pathol (Amst)
                Anal Cell Pathol (Amst)
                ACP
                Analytical cellular pathology (Amsterdam)
                Hindawi Publishing Corporation
                2210-7177
                2210-7185
                2014
                18 December 2014
                : 2014
                : 352925
                Affiliations
                1Department of Investigative Pathology, Argos Laboratories, 60175-047 Fortaleza, CE, Brazil
                2Department of Pathology, Messejana Heart and Lung Hospital, Rua Frei Cirilo 4290, 60846-190 Fortaleza, CE, Brazil
                3Department of Thoracic Surgery, Messejana Heart and Lung Hospital, 60846-190 Fortaleza, CE, Brazil
                4Department of Pulmonology, Messejana Heart and Lung Hospital, 60846-190 Fortaleza, CE, Brazil
                Author notes
                Article
                10.1155/2014/352925
                4334032
                bdf66f3c-b9a0-42b2-bc19-978c320cfc94
                Copyright © 2014 Alba Fabiola Torres et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 August 2014
                : 30 November 2014
                : 1 December 2014
                Categories
                Research Article

                Comments

                Comment on this article